Physical activity, health-related physical fitness and markers of metabolic syndrome in adolescents: The PAHL-study
Associations of physical activity, fitness, and metabolic health in adolescents
DOI:
https://doi.org/10.52905/hbph2025.2.106Keywords:
Adolescents, health related physical fitness, metabolic syndrome, physical activity, and waist circumferenceAbstract
Background: Globally, declining physical activity (PA) and health-related physical fitness (HRPF) levels among adolescents, if not intervened, may increase the risk of developing metabolic syndrome (Mets).
Aim: We aimed to determine the relationship between PA, HRPF, and MetS markers in adolescents enrolled in the Physical Activity and Health Longitudinal (PAHL)-study.
Subjects and Methods: This cross-sectional study included 215 adolescents from the 2011 data point of the PAHL-study in South Africa. We measured PA with the short form of the International Physical Activity Questionnaire, HRPF with the EUROFIT fitness tests, and blood lipid profiles. Participants were classified as having MetS markers to according to the International Diabetes Federation and the National Cholesterol Education Program Adult Treatment Panel. Multiple regression analysis was performed to report the associations between PA, HRPF and MetS markers
Results: Multivariable regression analysis for the total group showed that waist circumference had significant (p<0.001) negative associations with standing broad jump (β=-0.29), bent arm hang (β=-0.45), sit-ups (β=-0.14), and predicted V̇O2max (β=-0.36).
Conclusion: High abdominal fatness was evident in the South African adolescent and associated with poor HRPF. Based on these findings, HRPF interventions should be explored as a cost-effective strategy to mitigate MetS risk in adolescents.
References
Al Zaki, M./Umar, U./Yenes, R./Rasyid, W./Ockta, Y./Budiwanto, A. (2023). The Impact of Regular Physical Activity on Lipid Profile and Cardiovaskular Health in Adolescents : A Literature Review. Jurnal Penelitian Pendidikan 9 (Special Issue), 213–221. https://doi.org/10.29303/jppipa.v9iSpecialIssue.7811.
Alam, S./Hasan, K./Neaz, S./Hussain, N./Hossain, F./Rahman, T. (2021). Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology 2 (2), 36–50. https://doi.org/10.3390/diabetology2020004.
Angelico, F./Baratta, F./Coronati, M./Ferro, D./Del Ben, M. (2023). Diet and metabolic syndrome: a narrative review. Internal and Emergency Medicine 18 (4), 1007–1017. https://doi.org/10.1007/s11739-023-03226-7.
Bekel, G. E./Thupayagale-Tshweneagae, G. (2020). Prevalence and associated factors of metabolic syndrome and its individual components among adolescents. International Journal of Public Health Science 9 (1), 46–56. https://doi.org/10.11591/ijphs.v9i1.20383.
Bitew, Z. W./Alemu, A./Ayele, E. G./Tenaw, Z./Alebel, A./Worku, T. (2020). Metabolic syndrome among children and adolescents in low and middle income countries: a systematic review and meta-analysis. Diabetology & Metabolic Syndrome 12, 1–23. https://doi.org/10.1186/s13098-020-00601-8.
Bull, F. C./Al-Ansari, S. S./Biddle, S./Borodulin, K./Buman, M. P./Cardon, G./Carty, C./Chaput, J.-P./Chastin, S./Chou, R./Dempsey, P. C./DiPietro, L./Ekelund, U./Firth, J./Friedenreich, C. M./Garcia, L./Gichu, M./Jago, R./Katzmarzyk, P. T./Lambert, E./Leitzmann, M./Milton, K./Ortega, F. B./Ranasinghe, C./Stamatakis, E./Tiedemann, A./Troiano, R. P./van der Ploeg, H. P./Wari, V./Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine 54 (24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955.
Burger, P. M./Koudstaal, S./Dorresteijn, J. A. N./Savarese, G./van der Meer, M. G./de Borst, G. J./Mosterd, A./Visseren, F. L. J. (2023). Metabolic syndrome and risk of incident heart failure in non-diabetic patients with established cardiovascular disease. International Journal of Cardiology 379, 66–75. https://doi.org/10.1016/j.ijcard.2023.03.024.
Calcaterra, V./Larizza, D./de Silvestri, A./Albertini, R./Vinci, F./Regalbuto, C./Dobbiani, G./Montalbano, C./Pelizzo, G./Cena, H. (2020). Gender-based differences in the clustering of metabolic syndrome factors in children and adolescents. Journal of Pediatric Endocrinology & Metabolism 33 (2), 279–288. https://doi.org/10.1515/jpem-2019-0134.
Choi, J./Yoon, T. W./Yu, M. H./Kang, D. R./Choi, S. (2021). Gender and age differences in the prevalence and associated factors of metabolic syndrome among children and adolescents in South Korea. Child Health Nursing Research 27 (2), 160–170. https://doi.org/10.4094/chnr.2021.27.2.160.
Chomiuk, T./Niezgoda, N./Mamcarz, A./Śliż, D. (2024). Physical activity in metabolic syndrome. Frontiers in Physiology 15, 1365761. https://doi.org/10.3389/fphys.2024.1365761.
Council of Europe (1987). Handbook of the EUROFIT tests of Physical Fitness. Straßburg.
Craig, C. L./Marshall, A. L./Sjöström, M./Bauman, A. E./Booth, M. L./Ainsworth, B. E./Pratt, M./Ekelund, U./Yngve, A./Sallis, J. F./Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise 35 (8), 1381–1395. https://doi.org/10.1249/01.mss.0000078924.61453.fb.
de Andrade Gonçalves, E. C./Alves Junior, C. A. S./Da Silva, V. S./Pelegrini, A./Silva, D. A. S. (2022). Anthropometric indicators of body fat as discriminators of low levels of cardiorespiratory fitness in adolescents. Journal of Pediatric Nursing 62, 43–50. https://doi.org/10.1016/j.pedn.2021.11.014.
de Castro Pinto, J. B./Cruz, J. P. S./de Pinho, T. M. P./de Dias Marques, A. S. P. (2020). Health-related physical fitness of children and adolescents in Portugal. Children and Youth Services Review 117, 105279. https://doi.org/10.1016/j.childyouth.2020.105279.
de Lima, T. R./Martins, P. C./Torre, G. L./Mannocci, A./Silva, K. S./Silva, D. A. S. (2021). Association between muscle strength and risk factors for metabolic syndrome in children and adolescents: a systematic review. Journal of Pediatric Endocrinology & Metabolism 34 (1), 1–12. https://doi.org/10.1515/jpem-2020-0135.
Della Corte, C./Alisi, A./Nobili, V. (2015). Metabolic Syndrome in Paediatric Population: Is it Time to Think Back on Diagnosis Criteria? European Medical Journal 3 (1), 48–54. https://doi.org/10.33590/emjhepatol/10314218.
Dellinger, Ann M. (2002). Barriers to Children Walking and Biking to School - United States, 1999. Centers for Disease Control and Prevention. Available online at https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5132a1.htm (accessed 8/11/2025).
Filho, N. S./Reuter, C. P./Silveira, J. F. D. C./Borfe, L./Renner, J. D. P./Pohl, H. H. (2022). Low performance-related physical fitness levels are associated with clustered cardiometabolic risk score in schoolchildren: a cross-sectional study. Human Movement 23 (3), 113–119. https://doi.org/10.5114/hm.2022.107976.
Fühner, T./Kliegl, R./Arntz, F./Kriemler, S./Granacher, U. (2021). An Update on Secular Trends in Physical Fitness of Children and Adolescents from 1972 to 2015: A Systematic Review. Sports Medicine 51 (2), 303–320. https://doi.org/10.1007/s40279-020-01373-x.
Gomwe, H./Phiri, L./Marange, C. S. (2024). Physical fitness profile of primary school learners in the Eastern Cape province of South Africa. Health SA Gesondheid 29, 2611. https://doi.org/10.4102/hsag.v29i0.2611.
Goran, M. I./Gower, B. A. (2001). Longitudinal study on pubertal insulin resistance. Diabetes 50 (11), 2444–2450. https://doi.org/10.2337/diabetes.50.11.2444.
Guthold, R./Stevens, G. A./Riley, L. M./Bull, F. C. (2020). Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet Child & Adolescent Health 4 (1), 23–35. https://doi.org/10.1016/S2352-4642(19)30323-2.
Kaur, J. (2014). Retracted: A Comprehensive Review on Metabolic Syndrome. Cardiology Research and Practice 2014, 4301528. https://doi.org/10.1155/2019/4301528.
Kim, E./Won, Y./Shin, J. (2021). Analysis of Children's Physical Characteristics Based on Clustering Analysis. Children 8 (6), 485. https://doi.org/10.3390/children8060485.
Kruger, H. S./Visser, M./Malan, L./Zandberg, L./Wicks, M./Ricci, C./Faber, M. (2023). Anthropometric nutritional status of children (0-18 years) in South Africa 1997-2022: a systematic review and meta-analysis. Public Health Nutrition 26 (11), 2226–2242. https://doi.org/10.1017/S1368980023001994.
Kryuchko, T. O./Mazur, A./Shadrin, O. H./Poda, O. A./Lysanets, Y. (2024). METABOLIC SYNDROME IN PEDIATRIC PRACTICE: DEFINITION, DIAGNOSTIC CRITERIA AND PRINCIPLES OF PATIENT MANAGEMENT (OVERVIEW). The Medical and Ecological Problems 28 (1), 49–58. https://doi.org/10.31718/mep.2024.28.1.07.
Léger, L. A./Mercier, D./Gadoury, C./Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences 6 (2), 93–101. https://doi.org/10.1080/02640418808729800.
Lopes, L./Póvoas, S./Mota, J./Okely, A. D./Coelho-E-Silva, M. J./Cliff, D. P./Lopes, V. P./Santos, R. (2017). Flexibility is associated with motor competence in schoolchildren. Scandinavian Journal of Medicine & Science in Sports 27 (12), 1806–1813. https://doi.org/10.1111/sms.12789.
Mäestu, E./Harro, J./Veidebaum, T./Kurrikoff, T./Jürimäe, J./Mäestu, J. (2020). Changes in cardiorespiratory fitness through adolescence predict metabolic syndrome in young adults. Nutrition, Metabolism and Cardiovascular Diseases 30 (4), 701–708. https://doi.org/10.1016/j.numecd.2019.12.009.
Mahumud, R. A./Sahle, B. W./Owusu-Addo, E./Chen, W./Morton, R. L./Renzaho, A. M. N. (2021). Association of dietary intake, physical activity, and sedentary behaviours with overweight and obesity among 282,213 adolescents in 89 low and middle income to high-income countries. International Journal of Obesity 45 (11), 2404–2418. https://doi.org/10.1038/s41366-021-00908-0.
Marasso, D./Lupo, C./Collura, S./Rainoldi, A./Brustio, P. R. (2021). Subjective versus Objective Measure of Physical Activity: A Systematic Review and Meta-Analysis of the Convergent Validity of the Physical Activity Questionnaire for Children (PAQ-C). International Journal of Environmental Research and Public Health 18 (7). https://doi.org/10.3390/ijerph18073413.
Marfell-Jones, M./Olds, T./Stewart, A./Carter, L. (2006). International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry (ISAK).
Matsha, T. E./Hassan, S./Bhata, A./Yako, Y./Fanampe, B./Somers, A./Hoffmann, M./Mohammed, Z./Erasmus, R. T. (2009). Metabolic syndrome in 10-16-year-old learners from the Western Cape, South Africa: Comparison of the NCEP ATP III and IDF criteria. Atherosclerosis 205 (2), 363–366. https://doi.org/10.1016/j.atherosclerosis.2009.01.030.
Mohamed, S. M./Shalaby, M. A./El-Shiekh, R. A./El-Banna, H. A./Emam, S. R./Bakr, A. F. (2023). Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chemistry Advances 3, 100335. https://doi.org/10.1016/j.focha.2023.100335.
Monyeki, M. A./Neetens, R./Moss, S. J./Twisk, J. (2012). The relationship between body composition and physical fitness in 14 year old adolescents residing within the Tlokwe local municipality, South Africa: the PAHL study. BMC Public Health 12 (1), 374. https://doi.org/10.1186/1471-2458-12-374.
Muvhulawa, N./Dludla, P. V./Ndlovu, M./Ntamo, Y./Mayeye, A./Luphondo, N./Hlengwa, N./Basson, A. K./Mabhida, S. E./Hanser, S./Mazibuko-Mbeje, S. E./Nkambule, B. B./Ndwandwe, D. (2024). Global trends in clinical trials and interventions for the metabolic syndrome: A comprehensive analysis of the WHO International Clinical Trials platform. Contemporary Clinical Trials Communications 40, 101330. https://doi.org/10.1016/j.conctc.2024.101330.
O'Brien, E./Asmar, R./Beilin, L./Imai, Y./Mancia, G./Mengden, T./Myers, M./Padfield, P./Palatini, P./Parati, G./Pickering, T./Redon, J./Staessen, J./Stergiou, G./Verdecchia, P. (2005). Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. Journal of Hypertension 23 (4), 697–701. https://doi.org/10.1097/01.hjh.0000163132.84890.c4.
Palacio-Agüero, A./Díaz-Torrente, X./Quintiliano Scarpelli Dourado, D. (2020). Relative handgrip strength, nutritional status and abdominal obesity in Chilean adolescents. PLOS One 15 (6), e0234316. https://doi.org/10.1371/journal.pone.0234316.
Park, H./Jun, S./Lee, H.-A./Kim, H. S./Hong, Y. S./Park, H. (2023). The Effect of Childhood Obesity or Sarcopenic Obesity on Metabolic Syndrome Risk in Adolescence: The Ewha Birth and Growth Study. Metabolites 13 (1), 133. https://doi.org/10.3390/metabo13010133.
Pienaar, C./Coetzee, B./Monyeki, A. M. (2015). The use of anthropometric measurements and the influence of demographic factors on the prediction of VO(2max) in a cohort of adolescents: the PAHL study. Annals of Human Biology 42 (2), 134–142. https://doi.org/10.3109/03014460.2014.930173.
Pilli, N. M./Kybartas, T. J./Lagally, K. M./Laurson, K. R. (2021). Low Muscular Strength, Weight Status, and Metabolic Syndrome in Adolescents: National Health and Nutrition Examination Survey 2011-2014. Pediatric Exercise Science 33 (2), 90–94. https://doi.org/10.1123/pes.2020-0108.
Pojskic, H./Eslami, B. (2018). Relationship Between Obesity, Physical Activity, and Cardiorespiratory Fitness Levels in Children and Adolescents in Bosnia and Herzegovina: An Analysis of Gender Differences. Frontiers in Physiology 9, 1734. https://doi.org/10.3389/fphys.2018.01734.
Ramesh, S./Abraham, R. A./Sarna, A./Sachdev, H. S./Porwal, A./Khan, N./Acharya, R./Agrawal, P. K./Ashraf, S./Ramakrishnan, L. (2022). Prevalence of metabolic syndrome among adolescents in India: a population-based study. BMC Endocrine Disorders 22 (1), 258. https://doi.org/10.1186/s12902-022-01163-8.
Renninger, M./Hansen, B. H./Steene-Johannessen, J./Kriemler, S./Froberg, K./Northstone, K./Sardinha, L./Anderssen, S. A./Andersen, L. B./Ekelund, U. (2020). Associations between accelerometry measured physical activity and sedentary time and the metabolic syndrome: A meta-analysis of more than 6000 children and adolescents. Pediatric Obesity 15 (1), e12578. https://doi.org/10.1111/ijpo.12578.
Santos, A. C./Willumsen, J./Meheus, F./Ilbawi, A./Bull, F. C. (2023). The cost of inaction on physical inactivity to public health-care systems: a population-attributable fraction analysis. The Lancet Global Health 11 (1), e32-e39. https://doi.org/10.1016/S2214-109X(22)00464-8.
Silva, D. A. S./Tremblay, M. S./Marinho, F./Ribeiro, A. L. P./Cousin, E./Nascimento, B. R./Da Valença Neto, P. F./Naghavi, M./Malta, D. C. (2020). Physical inactivity as a risk factor for all-cause mortality in Brazil (1990-2017). Population Health Metrics 18 (Suppl 1), 1–9. https://doi.org/10.1186/s12963-020-00214-3.
Silva, T. O./Norde, M. M./Vasques, A. C./Zambom, M. P./Antonio, M. A. R. d. G. M./Rodrigues, A. M. D. B./Geloneze, B. (2023). Association of physical activity and sitting with metabolic syndrome and hyperglycemic clamp parameters in adolescents - BRAMS pediatric study. Frontiers in Endocrinology 14, 1191935. https://doi.org/10.3389/fendo.2023.1191935.
Silveira Rossi, J. L./Barbalho, S. M./Reverete de Araujo, R./Bechara, M. D./Sloan, K. P./Sloan, L. A. (2022). Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes/Metabolism Research and Reviews 38 (3), e3502. https://doi.org/10.1002/dmrr.3502.
Tomkinson, G. R./Lang, J. J./Blanchard, J./Léger, L. A./Tremblay, M. S. (2019). The 20-m Shuttle Run: Assessment and Interpretation of Data in Relation to Youth Aerobic Fitness and Health. Pediatric Exercise Science 31 (2), 152–163. https://doi.org/10.1123/pes.2018-0179.
van Sluijs, E. M. F./Ekelund, U./Crochemore-Silva, I./Guthold, R./Ha, A./Lubans, D./Oyeyemi, A. L./Ding, D. M./Katzmarzyk, P. T. (2021). Physical activity behaviours in adolescence: current evidence and opportunities for intervention. The Lancet 398 (10298), 429–442. https://doi.org/10.1016/S0140-6736(21)01259-9.
Vasquez, F./Salazar, G./Vasquez, S./Torres, J. (2025). Association Between Physical Fitness and Cardiovascular Health in Chilean Schoolchildren from the Metropolitan Region. Nutrients 17 (1), 182. https://doi.org/10.3390/nu17010182.
Wilhite, K./Booker, B./Huang, B.-H./Antczak, D./Corbett, L./Parker, P./Noetel, M./Rissel, C./Lonsdale, C./Del Pozo Cruz, B./Sanders, T. (2023). Combinations of Physical Activity, Sedentary Behavior, and Sleep Duration and Their Associations With Physical, Psychological, and Educational Outcomes in Children and Adolescents: A Systematic Review. American Journal of Epidemiology 192 (4), 665–679. https://doi.org/10.1093/aje/kwac212.
World Health Organisation (2009). Obesity and Physical Activity, Technical Report Series. Geneva, Switzerland, WHO.
Xu, H./Li, X./Adams, H./Kubena, K./Guo, S. (2018). Etiology of Metabolic Syndrome and Dietary Intervention. International Journal of Molecular Sciences 20 (1), 128. https://doi.org/10.3390/ijms20010128.
Yuniana, R./Tomoliyus, T./Kushartanti, W./Nasrulloh, A./Pratama, K. W./Rosly, M. M./Karakauki, M./Ali, S. K. S. (2023). The Effectiveness of the Weight Training Method and Rest Interval on VO2 max, Flexibility, Muscle Strength, Muscular Endurance, and Fat Percentage in Students. International Journal of Human Movement and Sports Sciences 11 (1), 213–223. https://doi.org/10.13189/saj.2023.110125.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Makama Andries Monyeki

This work is licensed under a Creative Commons Attribution 4.0 International License.