Evaluating the role of anthropometric and genetic risk factors in ACL injury susceptibility across an Australian and South African cohort
DOI:
https://doi.org/10.52905/hbph2025.2.103Keywords:
Genetics research, Principal Component Analysis, COL12A1Abstract
Background Anterior cruciate ligament rupture (ACL-R) is a common sports injury influenced by biomechanical, anthropometric, environmental, and genetic factors. Collagen gene polymorphisms have been implicated in ACL-R, with a whole-genome sequencing twin study highlighting COL12A1 rs970547 C>T as a variant of interest. However, the additive impact of the anthropometric traits and COL12A1 on ACL-R susceptibility remains unexplored.
Objectives To investigate the additive effect of anthropometric traits and COL12A1 rs970547 C>T on ACL-R susceptibility in an Australian and South African cohort with the a priori hypothesis that female T/T carriers were at an increased risk.
Sample and Methods The study included ACL-R cases (Australia n = 354; South Africa n = 252) and controls (Australia n = 84; South Africa n = 232). COL12A1 rs970547 C>T SNP was genotyped using TaqMan® assays. Anthropometric traits were sex-stratified/standardised. Logistic regression and principal component analyses were assessed.
Results No significant genetic associations were found for COL12A1 rs970547 C>T in the i) individual/combined and ii) male/female cohorts. PCA revealed clustering of anthropometrics in PC1–PC2, with PC3 being driven exclusively by rs970547 in each cohort.
Conclusion No associations were noted between the COL12A1 rs970547 T/T genotype and ACL-R risk. PCA, however, indicated that rs970547 may hold biological significance in ACL-R susceptibility, highlighting the complex interplay of genetic and anthropometric traits.
References
Ahmetov, I. I./Hall, E. C. R./Semenova, E. A./Pranckevičienė, E./Ginevičienė, V. (2022). Advances in sports genomics. Advances in Clinical Chemistry 107, 215–263. https://doi.org/10.1016/bs.acc.2021.07.004.
Alsayed, H. N./Alkhateeb, M. A./Aldossary, A. A./Houbani, K. M./Aljamaan, Y. M./Alrashidi, Y. A. (2023). Risk of anterior cruciate ligament injury in population with elevated body mass index. Medicinski Glasnik 20 (1), 83–87. https://doi.org/10.17392/1517-22.
Alvarez-Romero, J./Laguette, M.-J. N./Seale, K./Jacques, M./Voisin, S./Hiam, D./Feller, J. A./Tirosh, O./Miyamoto-Mikami, E./Kumagai, H./Kikuchi, N./Kamiya, N./Fuku, N./Collins, M./September, A. V./Eynon, N. (2021). Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan. European Journal of Sport Science 23 (2), 284–293. https://doi.org/10.1080/17461391.2021.2011426.
Beckley, S./Dey, R./Stinton, S./van der Merwe, W./Branch, T./September, A. V./Posthumus, M./Collins, M. (2022). Investigating the association between COL1A1 and COL3A1 gene variants and knee joint laxity and ligament measurements. Clinical Biomechanics 100, 105822. https://doi.org/10.1016/j.clinbiomech.2022.105822.
Belkhelladi, M./Cierson, T./Martineau, P. A. (2025). Biomechanical Risk Factors for Increased Anterior Cruciate Ligament Loading and Injury: A Systematic Review. Orthopaedic Journal of Sports Medicine 13 (2). https://doi.org/10.1177/23259671241312681.
Belozo, F. L./Belozo, R. S. M. N./Lopes, C. R./Yamada, A. K./Silva, V. R. R. (2024). Anterior cruciate ligament: A brief narrative review of main risk factors for injury and re-injury. Journal of Bodywork and Movement Therapies 38, 92–99. https://doi.org/10.1016/j.jbmt.2024.01.022.
Bittencourt, N. F. N./Meeuwisse, W. H./Mendonça, L. D./Nettel-Aguirre, A./Ocarino, J. M./Fonseca, S. T. (2016). Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition-narrative review and new concept. British Journal of Sports Medicine 50 (21), 1309–1314. https://doi.org/10.1136/bjsports-2015-095850.
Bojicic, K. M./Beaulieu, M. L./Imaizumi Krieger, D. Y./Ashton-Miller, J. A./Wojtys, E. M. (2017). Association Between Lateral Posterior Tibial Slope, Body Mass Index, and ACL Injury Risk. Orthopaedic Journal of Sports Medicine 5 (2). https://doi.org/10.1177/2325967116688664.
Borzemska, B./Cięszczyk, P./Żekanowski, C. (2024). The Genetic Basis of Non-Contact Soft Tissue Injuries-Are There Practical Applications of Genetic Knowledge? Cells 13 (22). https://doi.org/10.3390/cells13221828.
Bowers, A. L./Spindler, K. P./McCarty, E. C./Arrigain, S. (2005). Height, weight, and BMI predict intra-articular injuries observed during ACL reconstruction: evaluation of 456 cases from a prospective ACL database. Clinical Journal of Sport Medicine 15 (1), 9–13. https://doi.org/10.1097/00042752-200501000-00003.
Bulbul, A./Ari, E./Apaydin, N./Ipekoglu, G. (2023). The Impact of Genetic Polymorphisms on Anterior Cruciate Ligament Injuries in Athletes: A Meta-Analytical Approach. Biology 12 (12). https://doi.org/10.3390/biology12121526.
Candela, V./Longo, U. G./Berton, A./Salvatore, G./Forriol, F./Sire, A. de/Denaro, V. (2024). Genome-Wide Association Screens for Anterior Cruciate Ligament Tears. Journal of Clinical Medicine 13 (8). https://doi.org/10.3390/jcm13082330.
Carter-Thuillier, B./Ramírez-Campillo, R./Serra-Olivares, J./Gallardo, F./Cresp, M./Ojeda Nahuelcura, R./Álvarez, C./Martínez, C./Cañas-Jamett, R. (2019). Anthropometric Characteristics of Female and Male Athletes Bear A Different Effect on Fitness. Asian Journal of Sports Medicine 10 (2). https://doi.org/10.5812/asjsm.66164.
Chia, L./Oliveira Silva, D. de/Whalan, M./McKay, M. J./Sullivan, J./Fuller, C. W./Pappas, E. (2022). Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Medicine 52 (10), 2447–2467. https://doi.org/10.1007/s40279-022-01697-w.
Chiquet, M./Birk, D. E./Bönnemann, C. G./Koch, M. (2014). Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. The International Journal of Biochemistry & Cell Biology 53, 51–54. https://doi.org/10.1016/j.biocel.2014.04.020.
Dlamini, S. B./Saunders, C. J./Laguette, M.-J. N./Gibbon, A./Gamieldien, J./Collins, M./September, A. V. (2023). Application of an in silico approach identifies a genetic locus within ITGB2, and its interactions with HSPG2 and FGF9, to be associated with anterior cruciate ligament rupture risk. European Journal of Sport Science 23 (10), 2098–2108. https://doi.org/10.1080/17461391.2023.2171906.
Domnick, C./Raschke, M. J./Herbort, M. (2016). Biomechanics of the anterior cruciate ligament: Physiology, rupture and reconstruction techniques. World Journal of Orthopedics 7 (2), 82–93. https://doi.org/10.5312/wjo.v7.i2.82.
Etzel, C. M./Meghani, O./Owens, B. D./Kocher, M. S./Field, A. E. (2024). Predictors of Anterior Cruciate Ligament Tears in Adolescents and Young Adults. Orthopaedic Journal of Sports Medicine 12 (9). https://doi.org/10.1177/23259671241272699.
Evans, J./Mabrouk, A./Nielson, J. l. (2025). Anterior Cruciate Ligament Knee Injury. Treasure Island (FL).
Evans, K. N./Kilcoyne, K. G./Dickens, J. F./Rue, J.-P./Giuliani, J./Gwinn, D./Wilckens, J. H. (2011). Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surgery, Sports Traumatology, Arthroscopy 20 (8), 1554–1559. https://doi.org/10.1007/s00167-011-1755-y.
Feldmann, D. C./Rahim, M./Suijkerbuijk, M. A. M./Laguette, M.-J. N./Cieszczyk, P./Ficek, K./Huminska-Lisowska, K./Häger, C. K./Stattin, E./Nilsson, K. G./Alvarez-Rumero, J./Eynon, N./Feller, J./Tirosh, O./Posthumus, M./Chimusa, E. R./Collins, M./September, A. V. (2021). Investigation of multiple populations highlight VEGFA polymorphisms to modulate anterior cruciate ligament injury. Journal of Orthopaedic Research 40 (7), 1604–1612. https://doi.org/10.1002/jor.25192.
Feldmann, D./Bope, C. D./Patricios, J./Chimusa, E. R./Collins, M./September, A. V. (2022). A whole genome sequencing approach to anterior cruciate ligament rupture-a twin study in two unrelated families. Public Library of Science One 17 (10), e0274354. https://doi.org/10.1371/journal.pone.0274354.
Filbay, S. R./Skou, S. T./Bullock, G. S./Le, C. Y./Räisänen, A. M./Toomey, C./Ezzat, A. M./Hayden, A./Culvenor, A. G./Whittaker, J. L./Roos, E. M./Crossley, K. M./Juhl, C. B./Emery, C. (2022). Long-term quality of life, work limitation, physical activity, economic cost and disease burden following ACL and meniscal injury: a systematic review and meta-analysis for the OPTIKNEE consensus. British Journal of Sports Medicine 56 (24), 1465–1474. https://doi.org/10.1136/bjsports-2022-105626.
Firfirey, F./September, A. V./Shamley, D. (2022). ABCB1 and OPRM1 single-nucleotide polymorphisms collectively modulate chronic shoulder pain and dysfunction in South African breast cancer survivors. Pharmacogenomics 23 (9), 513–530. https://doi.org/10.2217/pgs-2022-0020.
Fujie, H. (2016). Mechanical Properties and Biomechanical Function of the ACL. In: Mitsuo Ochi/Konsei Shino/Kazunori Yasuda et al. (Eds.). ACL Injury and Its Treatment. Tokyo, Springer Japan, 69–77.
Ginevičienė, V./Urnikytė, A. (2022). Association of COL12A1 rs970547 Polymorphism with Elite Athlete Status. Biomedicines 10 (10). https://doi.org/10.3390/biomedicines10102495.
González, J. R./Armengol, L./Solé, X./Guinó, E./Mercader, J. M./Estivill, X./Moreno, V. (2007). SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23 (5), 644–645. https://doi.org/10.1093/bioinformatics/btm025.
Hewett, T. E./Lynch, T. R./Myer, G. D./Ford, K. R./Gwin, R. C./Heidt, R. S. (2010). Multiple risk factors related to familial predisposition to anterior cruciate ligament injury: fraternal twin sisters with anterior cruciate ligament ruptures. British Journal of Sports Medicine 44 (12), 848–855. https://doi.org/10.1136/bjsm.2008.055798.
Izu, Y./Birk, D. E. (2023). Collagen XII mediated cellular and extracellular mechanisms in development, regeneration, and disease. Frontiers in Cell and Developmental Biology 11. https://doi.org/10.3389/fcell.2023.1129000.
John, R./Prabhakar, S./Dhillon, M. S./Anand, A./Minhas, G. (2016). Association of ACL tears and single nucleotide polymorphisms in the collagen 12 A1 gene in the Indian population - a preliminary case-control study. Muscles, Ligaments and Tendons Journal 6 (2), 253–257. https://doi.org/10.11138/mltj/2016.6.2.253.
Kamatsuki, Y./Qvale, M. S./Steffen, K./Wangensteen, A./Krosshaug, T. (2024). Anatomic Risk Factors for Initial and Secondary Noncontact Anterior Cruciate Ligament Injury: A Prospective Cohort Study in 880 Female Elite Handball and Soccer Players. The American Journal of Sports Medicine 53 (1), 123–131. https://doi.org/10.1177/03635465241292755.
Kaynak, M./Nijman, F./van Meurs, J./Reijman, M./Meuffels, D. E. (2017). Genetic Variants and Anterior Cruciate Ligament Rupture: A Systematic Review. Sports Medicine 47, 1637–1650. https://doi.org/10.1007/s40279-017-0678-2.
Kızılgöz, V./Sivrioğlu, A. K./Aydın, H./Ulusoy, G. R./Çetin, T./Tuncer, K. (2019). The Combined Effect of Body Mass Index and Tibial Slope Angles on Anterior Cruciate Ligament Injury Risk in Male Knees: A Case-Control Study. Clinical Medicine Insights. Arthritis and Musculoskeletal Disorders 12, 1-8. https://doi.org/10.1177/1179544119867922.
Lahiri, D. K./Nurnberger, J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research 19 (19), 5444. https://doi.org/10.1093/nar/19.19.5444.
Little, J./Higgins, J. P. T./Ioannidis, J. P. A./Moher, D./Gagnon, F./Elm, E. von/Khoury, M. J./Cohen, B./Davey-Smith, G./Grimshaw, J./Scheet, P./Gwinn, M./Williamson, R. E./Zou, G. Y./Hutchings, K./Johnson, C. Y./Tait, V./Wiens, M./Golding, J./van Duijn, C./McLaughlin, J./Paterson, A./Wells, G./Fortier, I./Freedman, M./Zecevic, M./King, R./Infante-Rivard, C./Stewart, A./Birkett, N. (2009). STrengthening the REporting of Genetic Association Studies (STREGA)--an extension of the STROBE statement. Genetic Epidemiology 33 (7), 581–598. https://doi.org/10.1002/gepi.20410.
Mancino, F./Kayani, B./Gabr, A./Fontalis, A./Plastow, R./Haddad, F. S. (2024). Anterior cruciate ligament injuries in female athletes: risk factors and strategies for prevention. Bone & Joint Open 5 (2), 94–100. https://doi.org/10.1302/2633-1462.52.BJO-2023-0166.
Massidda, M./Flore, L./Scorcu, M./Monteleone, G./Tiloca, A./Salvi, M./Tocco, F./Calò, C. M. (2023). Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report. Genes 14 (7). https://doi.org/10.3390/genes14071418.
Nakase, J./Kitaoka, K./Shima, Y./Oshima, T./Sakurai, G./Tsuchiya, H. (2020). Risk factors for noncontact anterior cruciate ligament injury in female high school basketball and handball players: A prospective 3-year cohort study. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology 22, 34–38. https://doi.org/10.1016/j.asmart.2020.06.002.
Neupane, B./Loeb, M./Anand, S. S./Beyene, J. (2012). Meta-analysis of genetic association studies under heterogeneity. European Journal of Human Genetics 20 (11), 1174–1181. https://doi.org/10.1038/ejhg.2012.75.
Paschou, P./Ziv, E./Burchard, E. G./Choudhry, S./Rodriguez-Cintron, W./Mahoney, M. W./Drineas, P. (2007). PCA-correlated SNPs for structure identification in worldwide human populations. Public Library of Science Genetics 3 (9), 1672–1686. https://doi.org/10.1371/journal.pgen.0030160.
Peterson, C./Li, T./Norcross, M. (2025). Return on investment of anterior cruciate ligament injury prevention programs in the United States. Journal of Athletic Training. https://doi.org/10.4085/1062-6050-0507.24.
Posch, M./Ruedl, G./Greier, K./Faulhaber, M./Tecklenburg, K./Schranz, A./Schliernzauer, B./Burtscher, M. (2023). Impact of Environmental Factors on the ACL Injury Risk in Recreational Alpine Skiing. International Journal of Sports Medicine 44 (13), 1003–1008. https://doi.org/10.1055/a-2134-3908.
Posthumus, M./September, A. V./O'Cuinneagain, D./van der Merwe, W./Schwellnus, M. P./Collins, M. (2010). The association between the COL12A1 gene and anterior cruciate ligament ruptures. British Journal of Sports Medicine 44 (16), 1160–1165. https://doi.org/10.1136/bjsm.2009.060756.
Rahim, M./Gibbon, A./Hobbs, H./van der Merwe, W./Posthumus, M./Collins, M./September, A. V. (2014). The association of genes involved in the angiogenesis-associated signaling pathway with risk of anterior cruciate ligament rupture. Journal of Orthopaedic Research 32 (12), 1612–1618. https://doi.org/10.1002/jor.22705.
Rahim, M./Lacerda, M./Collins, M./Posthumus, M./September, A. V. (2022). Risk modelling further implicates the angiogenesis pathway in anterior cruciate ligament ruptures. European Journal of Sport Science 22 (4), 650–657. https://doi.org/10.1080/17461391.2021.1884750.
Ribas, M. R./Schneider, F. K./Ribas, D. I. R./Lass, A. D./Badicu, G./Bassan, J. C. (2023). Genetic Polymorphisms and Their Impact on Body Composition and Performance of Brazilians in a 105 Km Mountain Ultramarathon. European Journal of Investigation in Health, Psychology and Education 13 (9), 1751–1761. https://doi.org/10.3390/ejihpe13090127.
Ribbans, W. J./September, A. V./Collins, M. (2022). Tendon and Ligament Genetics: How Do They Contribute to Disease and Injury? A Narrative Review. Life 12 (5). https://doi.org/10.3390/life12050663.
Ross, A. G./Agresta, B./McKay, M./Pappas, E./Cheng, T./Peek, K. (2023). Financial burden of anterior cruciate ligament reconstructions in football (soccer) players: an Australian cost of injury study. Injury Prevention: Journal of the International Society for Child and Adolescent Injury Prevention 29 (6), 474–481. https://doi.org/10.1136/ip-2023-044885.
Salman, L. A./Moghamis, I. S./Hatnouly, A. T./Khatkar, H./Alebbini, M. M./Al-Ani, A./Hameed, S./AlAteeq Aldosari, M. (2024). Correlation between anthropometric measurements and graft size in anterior cruciate ligament reconstruction: a systematic review and meta-analysis. European Journal of Orthopaedic Surgery & Traumatology 34 (1), 97–112. https://doi.org/10.1007/s00590-023-03712-w.
Sanders, T. L./Maradit Kremers, H./Bryan, A. J./Larson, D. R./Dahm, D. L./Levy, B. A./Stuart, M. J./Krych, A. J. (2016). Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. The American Journal of Sports Medicine 44 (6), 1502–1507. https://doi.org/10.1177/0363546516629944.
Seong, K.-H./Kim, K.-J./Park, H.-J./Lee, B.-H./Chang, E./Park, D.-H. (2024). Collagen Gene Variants and Anterior Cruciate Ligament Rupture in the Korean Population. Exercise Science 33 (4), 409–414. https://doi.org/10.15857/ksep.2024.00542.
September, A. V./Cook, J./Handley, C. J./van der Merwe, L./Schwellnus, M. P./Collins, M. (2009). Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. British Journal of Sports Medicine 43 (5), 357–365. https://doi.org/10.1136/bjsm.2008.048793.
September, A. V./Nell, E.-M./Connell, K. O./Cook, J./Handley, C. J./Schwellnus, M. P./Collins, M. (2011). Investigations of genes encoding proteins within the inflammatory pathway provides insight into the genetic susceptibility of achilles tendinopathy. British Journal of Sports Medicine 45 (4), 340. https://doi.org/10.1136/bjsm.2011.084038.86.
September, A. V./Schwellnus, M. P./Collins, M. (2007). Tendon and ligament injuries: the genetic component. British Journal of Sports Medicine 41 (4), 241-246. https://doi.org/10.1136/bjsm.2006.033035.
Spindler, K. P./Wright, R. W. (2008). Clinical practice. Anterior cruciate ligament tear. The New England Journal of Medicine 359 (20), 2135–2142. https://doi.org/10.1056/NEJMcp0804745.
Steffensmeier, A. M./Lamont, S. M./Metoyer, G./DiPaolo, Z./Froehle, A. W. (2020). Relationship Between Age at Adult Height and Knee Mechanics During a Drop Vertical Jump in Men. Orthopaedic Journal of Sports Medicine 8 (8). https://doi.org/10.1177/2325967120944912.
Sun, Z./Cięszczyk, P./Humińska-Lisowska, K./Michałowska-Sawczyn, M./Yue, S. (2023). Genetic Determinants of the Anterior Cruciate Ligament Rupture in Sport: An Up-to-Date Systematic Review. Journal of Human Kinetics 87, 105–117. https://doi.org/10.5114/jhk/163073.
Tamura, A./Akasaka, K./Otsudo, T./Shiozawa, J./Toda, Y./Yamada, K. (2017). Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. Public Library of Science One 12 (6), e0179810. https://doi.org/10.1371/journal.pone.0179810.
Tian, C./Gregersen, P. K./Seldin, M. F. (2008). Accounting for ancestry: population substructure and genome-wide association studies. Human Molecular Genetics 17 (R2). https://doi.org/10.1093/hmg/ddn268.
Tucker, R./Collins, M. (2012). What makes champions? A review of the relative contribution of genes and training to sporting success. British Journal of Sports Medicine 46 (8), 555–561. https://doi.org/10.1136/bjsports-2011-090548.
Wang, J./Lü, D./Mao, D./Long, M. (2014). Mechanomics: an emerging field between biology and biomechanics. Protein & Cell 5 (7), 518–531. https://doi.org/10.1007/s13238-014-0057-9.
Wiggins, A. J./Grandhi, R. K./Schneider, D. K./Stanfield, D./Webster, K. E./Myer, G. D. (2016). Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. The American Journal of Sports Medicine 44 (7), 1861–1876. https://doi.org/10.1177/0363546515621554.
Zhao, D./Zhang, Q./Lu, Q./Hong, C./Luo, T./Duan, Q./Shu, S./Lv, J./Zhao, W. (2020). Correlations Between the Genetic Variations in the COL1A1, COL5A1, COL12A1, and β-fibrinogen Genes and Anterior Cruciate Ligament Injury in Chinese Patients. Journal of Athletic Training 55 (5), 515–521. https://doi.org/10.4085/1062-6050-335-18.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dr F Firfirey, Dr MJN Laguette, Prof M Collins, Dr Groth, Prof M Hermanussen, Prof C Scheffler, Prof A.V. September

This work is licensed under a Creative Commons Attribution 4.0 International License.