Coherence: a new approach for analyzing interrelated serial data

Authors

DOI:

https://doi.org/10.52905/hbph2024.2.95

Keywords:

secular trend, serial data, locally structured correlation, coherence, breakpoint analysis

Abstract

Background Serial public health data may or may not reflect living conditions, political background and/or certain targeted health interventions. Yet, the effect of political events and/or health interventions that only last for a few years or a single legislative period may be difficult to analyze as restricting the range of the variables, i.e. the time interval within which the data were obtained, restricts the power of correlation analyzes.

Objectives to provide a method to eliminate linear trends from serially obtained data and to visualize agreement between these data.

Method We combine information of both the X- and the Y-axis and assess the agreement (coherence) between variables by clockwise (positive correlation) or anticlockwise (negative correlation) rotation of the coordinates.

We provide an illustrative historic example of the coherence of infant mortality as an indicator of public health and body height in Germany between 1885 and 1995.

Results Calculating coherence between correlating variables eliminates linear trends and leaves residuals that correspond to local correlation coefficients.

The substantial changes in the coherence pattern of infant mortality and height exemplify the changes in the interaction between these variables during the transition from late feudalism to modern democracy.

Conclusion Assessing coherence patterns enables a sensitive assessment of inhomogeneity and temporal trend changes in serially obtained correlated variables.

References

Bach, F. (1965). Untersuchungen über Körpergröße und Körpergewicht bei Kindern verschiedener sozialer Berufsgruppen. Anthropologischer Anzeiger 27, 289–296.

Baghdady, Anne/Würz, Markus (2016). Leben in Trümmern. Available online at https://www.hdg.de/lemo/kapitel/nachkriegsjahre/alltag/leben-in-truemmern.html.

Blanchet, T./Martínez-Toledano, C. (2023). Wealth inequality dynamics in europe and the united states: understanding the determinants. Journal of Monetary Economics 133, 25–43. Available online at https://www.sciencedirect.com/journal/journal-of-monetary-economics/vol/133/suppl/C.

Bland, J. M./Altman, D. G. (2011). Correlation in restricted ranges of data. British Medical Journal Clinical Research 342, d556. https://doi.org/10.1136/bmj.d556.

Bökenkamp, G. (2010). Das Ende des Wirtschaftswunders. Geschichte der Sozial-, Wirtschafts- und Finanzpolitik in der Bundesrepublik 1969 - 1998. Berlin, Boston, De Gruyter, Oldenbourg.

Glatzer, D./Glatzer, R. (1983). Berliner Leben 1914 - 1918. Eine historische Reportage aus Erinnerungen und Berichten. Berlin, Rütten & Lönning.

Grossmann, A. (2011). Grams, calories, and food: languages of victimization, entitlement, and human rights in occupied Germany, 1945–1949. Central European History 44, 118–148. https://doi.org/10.1017/S0008938910001202.

Institut für Wehrmedizinalstatistik und Berichtswesen, Remagen (1995). Körperhöhen westdeutscher Wehrpflichtiger der Geburtsjahrgänge 1938 bis 1975. Remagen, Wehrmedizinalstatistik und Berichtswesen.

Jaeger, U./Zellner, K./Kromeyer-Hauschild, K./Lüdde, R./Eisele, R./Hebebrand, J. (2001). Körperhöhe, Körpergewicht und Body Mass Index bei deutschen Wehrpflichtigen. Historischer Rückblick und aktueller Stand. Anthropologischer Anzeiger 59 (3), 251–273. https://doi.org/10.1127/anthranz/59/2001/251.

Jolliffe, I. T./Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 374 (2065), 20150202. https://doi.org/10.1098/rsta.2015.0202.

Jones, R. H./Molitoris, B. A. (1984). A statistical method for determining the breakpoint of two lines. Analytical Biochemistry 141 (1), 287–290. https://doi.org/10.1016/0003-2697(84)90458-5.

Lakes, K. D. (2013). Restricted sample variance reduces generalizability. Psychological Assessment 25 (2), 643–650. https://doi.org/10.1037/a0030912.

Lehnert, B. (2015). Bland-Altman-Plots. University Medicine Greifswald, Germany. Available online at https://cran.r-project.org/web/packages/BlandAltmanLeh/vignettes/Intro.html.

MedCalc (2024). Bland-Altman plot with multiple measurements per subject. MedCalc Software Ltd. Available online at https://www.medcalc.org/manual/blandaltmanmultiple.php.

Mumm, R./Scheffler, C./Hermanussen, M. (2022). Locally structured correlation (LSC) plots describe inhomogeneity in normally distributed correlated bivariate variables. Archives of Public Health 80 (1), 30. https://doi.org/10.1186/s13690-021-00748-4.

Nowak, O./Liczbinska, G./Piontek J. (Eds.) (2020). Were inequalities in trends of body size observed in 19th/20th centuries ? Economic and nutritional determinants of the height, weight and BMI in populations from the Prussian sector. Abstract for a conference. Poznan, Poland.

O'Neill, Aaron (2024). Infant mortality rate (under one year old) in Germany from 1840 to 2020. Available online at https://www.statista.com/statistics/1042395/germany-all-time-infant-mortality-rate/.

Rass, Christoph (2023). Anonymisierter biographischer Datensatz zu Mannschaften und Unteroffizieren von Heer, Luftwaffe und Waffen-SS, 1939-1945. Online Anonymisierter biographischer Datensatz zu Mannschaften und Unteroffizieren von Heer, Luftwaffe und Waffen-SS, 1939-1945. GESIS Studiennummer 8410. Datenbank und Handbuch Personenbezogene Quellen zu den bewaffneten Formationen des Dritten Reiches. GESIS. Available online at https://www.deutsche-digitale-bibliothek.de.

Rass, Christoph/Rohrkamp, René (2009). Überregionale Erschließung personenbezogener Quellen zu Angehörigen der bewaffneten Formation des ´Dritten Reiches´ (Deutsche Soldaten 1939 bis 1945). GESIS. Available online at Online verfügbar unter Anonymisierter biographischer Datensatz zu Mannschaften und Unteroffizieren von Heer, Luftwaffe und Waffen-SS, 1939-1945, GESIS Studiennummer 8410.

Rosenstock, E./Ebert, J./Martin, R./Hicketier, A./Walter, P./Groß, M. (2019). Human stature in the Near East and Europe ca. 10,000–1000 BC: its spatiotemporal development in a Bayesian errors-in-variables model. Archaeological and Anthropological Sciences 11 (10), 5657–5690. https://doi.org/10.1007/s12520-019-00850-3.

Thorndike, R. L. (Ed.) (1949). Personnel selection: test and measurement techniques. New York, Wiley.

Träbert, H. (1948). Ergebnisse einer Reihenuntersuchung von 17000 Personen im Frühjahr 1947. Zeitschrift für die gesamte Innere Medizin und ihre Grenzgebiete 3.

van Buuren, S. (2019). Flexible imputation of missing data. 2nd ed. Boca Raton, Florida, Chapman & Hall/CRC.

Downloads

Published

2024-12-20

How to Cite

Mumm, R., Groth, D., & Hermanussen, M. (2024). Coherence: a new approach for analyzing interrelated serial data. Human Biology and Public Health, 2. https://doi.org/10.52905/hbph2024.2.95

Issue

Section

Articles