Estimation of percentage of body fat in field studies – a method based on relative elbow breadth (Frame Index) and BMI

Keywords: body fat estimator, body composition, skeletal robusticity, hidden obesity, normal weigh obese



Over the last 20 years, a decreasing trend in external skeletal robusticity and an increasing trend in overweight and obesity was observed worldwide in adults and children as modern lifestyles in nutritional and activity behavior have changed. However, body mass index (BMI) as a measure for overweight is not an ideal predictor of % body fat (%BF) either in children and adolescents or in adults. On the contrary, it disguises a phenomenon called “hidden obesity”.


We aim to approximate %BF by combining skeletal robusticity and BMI and develop an estimation-based tool to identify normal weight obese children and adolescents.

Sample and Methods

We analyzed cross-sectional data on height, weight, elbow breadth, and skinfold thickness (triceps and subscapular) of German children aged 6 to 18 years (N=15,034). We used modified Hattori charts and multiple linear regression to develop a tool, the “%BF estimator”, to estimate %BF by using BMI and skeletal robusticity measured as Frame Index.


Independent of sex and age an increase in BMI is associated with an increase in %BF, an increase in Frame Index is associated with a decrease in %BF. The developed tool “%BF estimator” allows the estimation of %BF per sex and age group after calculation of BMI and Frame Index.


The “%BF estimator” is an easily applicable tool for the estimation of %BF in respect of body composition for clinical practice, screening, and public health research. It is non-invasive and has high accuracy. Further, it allows the identification of normal weight obese children and adolescents.


Birch, L./Perry, R./Hunt, L. P./Matson, R./Chong, A./Beynon, R./Shield, J. P. (2019). What change in body mass index is associated with improvement in percentage body fat in childhood obesity? A meta-regression. BMJ open 9 (8), e028231.

Bland, J. M./Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 1 (8476), 307–310.

Bland, J. M./Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical methods in medical research 8 (2), 135–160.

Borga, M./West, J./Bell, J. D./Harvey, N. C./Romu, T./Heymsfield, S. B./Dahlqvist Leinhard, O. (2018). Advanced body composition assessment: from body mass index to body composition profiling. Journal of investigative medicine : the official publication of the American Federation for Clinical Research 66 (5), 1–9.

Czernitzki, A.-F./Kokstejn, J./Koziel, S./Mumm, R./Musalek, M./Papez, P./Scheffler, C. (2017). Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. Anthropologischer Anzeiger 74 (3), 203–212.

Deurenberg-Yap, M./Schmidt, G./van Staveren, W. A./Deurenberg, P. (2000). The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. International Journal of Obesity and Related Metabolic Disorders : Journal of the International Association for the Study of Obesity 24 (8), 1011–1017.

Epstein, L. H./Roemmich, J. N./Robinson, J. L./Paluch, R. A./Winiewicz, D. D./Fuerch, J. H./Robinson, T. N. (2008). A randomized trial of the effects of reducing television viewing and computer use on body mass index in young children. Archives of Pediatrics & Adolescent Medicine 162 (3), 239–245.

Frisancho, A. R. (1990). Anthropometric standards for the assessment of growth and nutritional status. Ann Arbor, The Univ. of Michigan Pr.

Hattori, K./Hirohara, T./Satake, T. (2011). Body proportion chart for evaluating changes in stature, sitting height and leg length in children and adolescents. Annals of Human Biology 38 (5), 556–560.

Hattori, K./Tatsumi, N./Tanaka, S. (1997). Assessment of body composition by using a new chart method. American Journal of Human Biology 9 (5), 573–578.<573::AID-AJHB5>3.0.CO;2-V.

Hermanussen, M./Scheffler, C./Groth, D./Aßmann, C. (2015). Height and skeletal morphology in relation to modern life style. Journal of Physiological Anthropology 34, 41.

Hetherington-Rauth, M./Bea, J. W./Blew, R. M./Funk, J. L./Hingle, M. D./Lee, V. R./Roe, D. J./Wheeler, M. D./Lohman, T. G./Going, S. B. (2018). Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone 113, 144–150.

Hölling, H./Schlack, R./Kamtsiuris, P./Butschalowsky, H./Schlaud, M./Kurth, B. M. (2012). Die KiGGS-Studie. Bundesweit repräsentative Längs- und Querschnittstudie zur Gesundheit von Kindern und Jugendlichen im Rahmen des Gesundheitsmonitorings am Robert Koch-Institut [The KiGGS study. Nationwide representative longitudinal and cross-sectional study on the health of children and adolescents within the framework of health monitoring at the Robert Koch Institute]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 55 (6-7), 836–842.

Kamtsiuris, P./Lange, M./Schaffrath Rosario, A. (2007). Der Kinder- und Jugendgesundheitssurvey (KiGGS): Stichprobendesign, Response und Nonresponse-Analyse. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 50 (5-6), 547–556.

Kromeyer-Hauschild, K./Wabitsch, M./Kunze, D./Geller, F./Geiß, H. C./Hesse, V./Hippel, A. von/Jaeger, U./Johnsen, D./Korte, W./Menner, K./Müller, G./Müller, J. M./Niemann-Pilatus, A./Remer, T./Schaefer, F./Wittchen, H.-U./Zabransky, S./Zellner, K./Ziegler, A./Hebebrand, J. (2001). Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde 149 (8), 807–818.

La Guzmán-de Garza, F. J./González Ayala, A. E./Gómez Nava, M./Martínez Monsiváis, L. I./Salinas Martínez, A. M./Ramírez López, E./Mathiew Quirós, A./Garcia Quintanilla, F. (2017). Body frame size in school children is related to the amount of adipose tissue in different depots but not to adipose distribution. American Journal of Human Biology 29 (5).

Lorenzo, A. de/Martinoli, R./Vaia, F./Di Renzo, L. (2006). Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutrition, Metabolism, and Cardiovascular Diseases 16 (8), 513–523.

Marques-Vidal, P./Pécoud, A./Hayoz, D./Paccaud, F./Mooser, V./Waeber, G./Vollenweider, P. (2010). Normal weight obesity: relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutrition, Metabolism, and Cardiovascular Diseases 20 (9), 669–675.

Mokhtar, N./Elati, J./Chabir, R./Bour, A./Elkari, K./Schlossman, N. P./Caballero, B./Aguenaou, H. (2001). Diet culture and obesity in northern Africa. The Journal of Nutrition 131 (3), 887S-892S.

Mumm, R. (2015). It’s a matter of tempo - influence of the individual developmental tempo in adolescents on anthropometric measures and growth references [Eine Frage des Tempos - Der Einfluss der indivuellen Entwicklungsgeschwindigkeit von Jugendlichen auf anthropometrische Maße und Wachstumsreferenzen]. Master thesis. Potsdam, University of Potsdam.

Mumm, R./Godina, E./Koziel, S./Musalek, M./Sedlak, P./Wittwer-Backofen, U./Hesse, V./Dasgupta, P./Henneberg, M./Scheffler, C. (2018). External skeletal robusticity of children and adolescents - European references from birth to adulthood and international comparisons. Anthropologischer Anzeiger 74 (5), 383–391.

Musálek, M./Pařízková, J./Godina, E./Bondareva, E./Kokštejn, J./Jírovec, J/Vokounová, Š. (2018). Poor skeletal robustness on lower extremities and weak lean mass development on upper arm and calf: normal weight obesity in middle-school-aged children (9 to 12). Frontiers in Pediatrics 6, 371.

Navazo, B./Oyhenart, E./Dahinten, S./Mumm, R./Scheffler, C. (2020). Decrease of external skeletal robustness (Frame Index) between two cohorts of school children living in Puerto Madryn, Argentina at the beginning of the 21st century. Anthropologischer Anzeiger 77 (5), 405–413.

NCD Risk Factor Collaboration (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 390 (10113), 2627–2642.

Nickerson, B. S./Esco, M. R./Fedewa, M. V./Park, K.-S. (2020). Development of a body mass index-based body fat equation: effect of handgrip strength. Medicine and Science in Sports and Exercise 52 (11), 2459–2465.

Plachta-Danielzik, S./Gehrke, M. I./Kehden, B./Kromeyer-Hauschild, K./Grillenberger, M./Willhöft, C./Bosy-Westphal, A./Müller, M. J. (2012). Body fat percentiles for German children and adolescents. Obesity Facts 5 (1), 77–90.

Pomeroy, E./Macintosh, A./Wells, J. C. K./Cole, T. J./Stock, J. T. (2018). Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: implications for estimating body mass and physique from the skeleton. American Journal of Physical Anthropology 166 (1), 56–69.

Prentice, A. M./Jebb, S. A. (2001). Beyond body mass index. Obesity Reviews 2 (3), 141–147.

Preuschoft, H. (2004). Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? Journal of Anatomy 204 (5), 363–384.

Rietsch, K./Eccard, J. A./Scheffler, C. (2013a). Decreased external skeletal robustness due to reduced physical activity? American Journal of Human Biology 25 (3), 404–410.

Rietsch, K./Godina, E./Scheffler, C. (2013b). Decreased external skeletal robustness in schoolchildren--a global trend? Ten year comparison of Russian and German data. PloS One 8 (7), e68195.

Romero-Corral, A./Somers, V. K./Sierra-Johnson, J./Korenfeld, Y./Boarin, S./Korinek, J./Jensen, M. D./Parati, G./Lopez-Jimenez, F. (2010). Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. European Heart Journal 31 (6), 737–746.

Schaffrath, Rosario A./Kurth, B.-M./Stolzenberg, H./Ellert, U./Neuhauser, H. (2010). Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS 2003-2006). European Journal of Clinical Nutrition 64 (4), 341–349.

Scheffler, C. (2010). The change of skeletal robustness of 6-12 years old children in Brandenburg (Germany)--comparison of body composition 1999-2009. Anthropologischer Anzeiger 68 (2), 153–165.

Scheffler, C./Hermanussen, M. (2014). Is there an influence of modern life style on skeletal build? American Journal of Human Biology 26 (5), 590–597.

Scheffler, C./Hermanussen, M. (2018). Growth in childhood and adolescence. In: W. Trevathan (Ed.). The international encyclopedia of biological anthropology. Hoboken, NJ, Wiley Blackwell, 693–703.

Schilitz, A. (2001). Körperliche Entwicklung und Körperzusammensetzung von Brandenburger Schulkindern im Geschlechter- und Altersgruppenvergleich. Zugl.: Potsdam, Univ., Diss, 2001. Aachen, Shaker.

Schüler, G. (2009). Potsdamer Längsschnittstudie: Beurteilung der körperlichen Entwicklung vom Kleinkindalter bis zum frühen Schulalter mit Hilfe von Somatometrie, Fotogrammetrie und Morphognose. Dissertation. Potsdam, University of Potsdam.

Schwandt, P./Eckardstein, A: von/Haas, G.-M. (2012). Percentiles of percentage body fat in german children and adolescents: an international comparison. International Journal of Preventive Medicine 3 (12), 846–852.

Slaughter, M. H./Lohman, T. G./Boileau, R. A./Horswill, C. A./Stillman, R. J./van Loan, M. D./Bemben, D. A. (1988). Skinfold equations for estimation of body fatness in children and youth. Human biology 60 (5), 709–723.

Swinburn, B. A./Kraak, V. I./Allender, S./Atkins, V. J./Baker, P. I./Bogard, J. R./Brinsden, H./Calvillo, A./Schutter, O. de/Devarajan, R./Ezzati, M./Friel, S./Goenka, S./Hammond, R. A./Hastings, G./Hawkes, C./Herrero, M./Hovmand, P. S./Howden, M./Jaacks, L. M./Kapetanaki, A. B./Kasman, M./Kuhnlein, H. V./Kumanyika, S. K./Larijani, B./Lobstein, T./Long, M. W./Matsudo, V. K. R./Mills, S. D. H./Morgan, G./Morshed, A./Nece, P. M./Pan, A./Patterson, D. W./Sacks, G./Shekar, M./Simmons, G. L./Smit, W./Tootee, A./Vandevijvere, S./Waterlander, W. E./Wolfenden, L./Dietz, W. H. (2019). The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. The Lancet 393 (10173), 791–846.

Tanner, J. M. (1962). Growth at adolescence. With a general consideration af the effects of hereditary and environmental factors upon growth and maturation from birth to maturity. 2nd ed. Oxford, Blackwell Scientific Publications.

Ulijaszek, S. J./Lourie, J. A. (1994). Intra- and inter-observer error in anthropometric measurement. In: C. G. N. Mascie-Taylor/S. J. Ulijaszek (Eds.). Anthropometry. The individual and the population. Cambridge, Cambridge University Press, 30–55.

Wells, J. C. K. (2014). Toward body composition reference data for infants, children, and adolescents. Advances in Nutrition 5 (3), 320S–329S.

Wells, J. C. K. (2018). Body composition. In: W. Trevathan (Ed.). The international encyclopedia of biological anthropology. Hoboken, NJ, Wiley Blackwell, 1–8.

Wickramasinghe, V. P. (2012). Hattori chart based evaluation of body composition and its relation to body mass index in a group of Sri Lankan children. Indian Journal of Pediatrics 79 (5), 632–639.

Wohlfahrt-Veje, C./Tinggaard, J./Winther, K./Mouritsen, A./Hagen, C. P./Mieritz, M. G./Renzy-Martin, K. T. de/Boas, M./Petersen, J. H./Main, K. M. (2014). Body fat throughout childhood in 2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with dual X-ray absorptiometry. European Journal of Clinical Nutrition 68 (6), 664–670.

Woolcott, O. O./Bergman, R. N. (2019). Relative fat mass as an estimator of whole-body fat percentage among children and adolescents: a cross-sectional study using NHANES. Scientific Reports 9 (1), 15279.

How to Cite
Mumm, R., Reimann, A., & Scheffler, C. (2021). Estimation of percentage of body fat in field studies – a method based on relative elbow breadth (Frame Index) and BMI . Human Biology and Public Health, 1.