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The package mcgraph can be used to create different types of directed and undirected
graphs and data for those graphs where the correlations between the nodes, which can
be seen as well as variables, represent the graph structure. The data are generated using
Monte Carlo simulations. The average strength of the associations between the nodes can
be modulated by changing the number of iterations or the amount of noise. Finally the
package contains a few convenience functions to visualize the graphs and the correlations
between the nodes.

Introduction

The mcgraph package can be used to create various variations of random or defined graph types and to
create data for those graphs where the correlations between individual nodes/variables resemble the
graph topology. The user can further create directed from undirected graphs, either using the graph
creation functions provided by this package or by their own input graphs. So in comparison to other
graph and graph data generation packages such as the huge package,' the user can create directed from
undirected graphs and has control over the input nodes from those graphs. The package mcgraph is
not thought to be used as a tool for analysing graphs in great detail, however some standard methods
are provided to allow basic inspection and analysis of the generated graphs and their data. For more
sophisticated analysis of the graphs and their data, packages like igraph? or sna® should be used.

The resulting data can be used to reconstruct the graph by using the simple correlation threshold
method, a pruning method which just hilights strong correlations between nodes. This method is just
given for illustration purposes. It works only well for simple and small graphs, more complex graphs
should be reconstructed using methods like linear model approaches with greedy algorithms such as
stepwise forward selection or more efficient best subset selection methods such as the Lasso,* the latter
as well applicable for larger graphs. Therefor the R packages like ggraph® or huge' should be used.
Further there are also partial correlation approaches which are implemented for instance in the package
PCITS

Generating Graphs

Graphs can be created based on an user defined adjacency matrix or by using the random graph
generators provided by the mcgraph package. Let’s start with a simple graph made step by step. We
first create an empty adjacency matrix, thereafter, name the node with letters and add edges between
some of the nodes. In an adjacency graph nodes connected by an edge have a matrix value of one,
nodes which are unconnected have an matrix value of zero. In a directed graph the direction is read in
form of from row-node-name to column-node-name. The adjacency matrix created in the following R
code represents a directed graph.

library(mcgraph)



## Loading required package: MASS

## Loading required package: rpart

## Loading required package: Rcpp

G=matrix(0,nrow=8,ncol=8)
rownames (G) =colnames (G)=LETTERS[1:8]

GL'A','C']=1
G['B','C']=1
GL'C','D']=1

¢['D', 'E']=1

Gl'D', 'F']l=1

G['E', 'F']=1

G

#¢ ABCDEFGH
# 400100000
# B00 100000
# C00010000
##D00001100
##E00000100
# F 00000000
# G00000000
# H0 0000000

The matrix has now 8 rows and 8 columns. We can convert such an adjacency matrix to a mcgraph
object by using the function mecg.new. Optionally it is possible to specify a type name to indicate
which type of graph we have.

G=mcg.new(G,type="mygraph")
class(G)

## [1] "mcgraph"

With the new graph object we have a few S3 class methods for a mcgraph object to our use:

methods(class=class(G))

## [1] as.matrix degree density plot summary
## see '"methods' for accessing help and source code

degree(G)

## ABCDEFGH
## 11332200

degree (G,mode="out")

## ABCDEFGH
## 11121000



degree(G,mode="1in"

# ABCDEFGH
## 00211200

par(mai=c(0.1,0.1,0.2,0.0) ,mfrow=c(2,2))
plot(G,layout="mds",main="mds")
plot(G,layout='circle',main="circle")
plot(G,layout="'sam',main="sam(mon)")
p=recordPlot ()

The degree function returns the number of edges for each graph, with the plot function we can visualize
our graph. The default layout for plotting is ‘mds’ where classical multidimensional scaling (MDS)
is used to calculate the graph coordinates using the first two eigenvectors with largest eigenvalues.
The data which are used are this shortest path data for the graph, so the longer the path between
two nodes, the longer the distance between the nodes in the plot. This MDS approach however, is
here not optimal as two nodes are overlapping (see figure ?77). We switch therefor to circle and sam
layout. The latter layout is based on a MDS variant, “Sammon’s Non-Linear Mapping” implemented
in the sammon function of the MASS package which, as a recommended package, should be part of
every standard R installation. In case of directed graphs, input nodes, nodes with no incoming edge
are colored by default red and output nodes, nodes with no outgoing edge but input edges are colored
blue. Nodes with incoming and outcoming edges are colored gray.

If you would like to provide your own plotting layout, you can achieve this by setting the layout
attribute of your graph. For this you have to create matrix with two columns, the first columns contains
the z, the second the y values for the node layout in two dimensions. The layout matrix must have the
same number of rows as the graph has nodes.

lay=matrix(c(1,2, 1,1, 2,1.5, 3,1.5, 4,2, 4,1, 2,2, 3,2),
ncol=2,byrow=TRUE)
lay

## [,1]1 [,2]
## [1,] 1 2.
## [2,]
## [3,]
## [4,]
## [5,]
## [6,]
## [7,]
## [8,]
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attr(G, 'layout')=lay

par (mfrow=c(2,2) ,mai=c(0.1,0.1,0.1,0.1))
replayPlot (p)

plot(G,main="custom")

For more sophisticated plotting methods and other graph layouts you should use the igraph package.
Instead of creating our own graphs with a defined topology, we can as well use some of the provided
graph generators of the mcgraph package. Here an example with a random graph giving the number of
edges and the number of nodes as an argument.

set.seed(12345)
ang=mcg.angie(nodes=12,edges=18)
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Figure 1: Plotting graph with different layouts.



The resulting graph is shown in figure 2 in the upper left. The angie graph algorithm at first constructs
a tree structure by adding nodes to existing nodes chosing one of them randomly. When all nodes
are added to the graph, the remaining edges are added randomly to connect two existing nodes. In
comparison to the similar Erdos-Renyi graph creation algorithm we always end up with a single graph
component if the number of edges plus two is larger than the number of nodes: /E/+2 > |N].

Creating directed from undirected graphs

The mcgraph package allows you to generate directed from undirected graphs. This is done specifying
1 or more input nodes. The user can either specify defined input nodes by providing node names(s) or
by giving a number where one or more nodes are randomly chosen as input nodes.

Let’s try both approches on the graph ang created before. First we specify two input nodes by their
node names: ‘A1’ and ‘G1’, thereafer we let the algorithm randomly choose 3 inout nodes:

par (mfrow=c(2,2) ,mai=c(0.0,0.1,0.1,0.0))
plot(ang,layout="sam"
anu=mcg.u2d (ang, input=c("A1","G1"))
plot(anu,layout="sam")

anu=mcg.u2d(ang, input=3)

plot(anu, layout="sam")

anu=mcg.u2d(ang, input=4)

plot (anu,layout="sam"

As you can see, edges are starting from the input node and spread in the same direction to other nodes.
If the edge has already a direction the spread of input signals stops.

We can find out which graphs are input and output nodes by using the degree function using the mode
argument:

degree(anu,mode="in")==

## Al B1 C1 D1 E1l F1 G1 H1 I1 J1 K1 L1
## FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

The three nodes which are input nodes have no incoming edges and therefore their value here is TRUE.
We can further as well use mode out to check for output nodes, those ones which have no outgoing
edges.

degree(anu,mode="out")==0

## Al Bl C1 D1 E1 F1 G1 H1 I1 J1 K1 L1
## TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

Exploring some other graph types of the mcgraph package

Let’s now demonstrate some other graph topologies which can be created with the mcgraph package.
We start with some graphs having a defined graph structure.
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Figure 2: Random undirected and directed graphs made
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par (mfrow=c(3,2) ,mai=c(0.1,0.1,0.1,0.1))
banu=mcg.band (nodes=12)
band=mcg.u2d (banu, input=1)
plot(band,layout="circle")
ciru=mcg.circular(nodes=12)
cird=mcg.u2d(ciru, input=1)
plot(cird,layout="circle")
cross=mcg.cross(bands=5,length=4)
crosd=mcg.u2d(cross,input=1)
plot(crosd,layout="star")
hubs=mcg.hubs (nodes=12,hubs=2)
hubd=mcg.u2d (hubs, input=c("A1","H1"))
plot(hubd,layout="circle")
latu=mcg.lattice(dim=5)
latd=mcg.u2d(latu, input=1)
plot(latd,layout="grid")
latu=mcg.lattice(dim=6,centralize=2)
latd=mcg.u2d(latu, input=3)
plot(latd,layout="grid")

There are as well a few random graph generation functions. Please note, that for the last graph, the
cluster graph we have to ensure, that in every cluster is at least one inout node.

par (mfrow=c(2,2) ,mai=c(0.1,0.1,0.1,0.1))
ang=mcg.angie(nodes=12,edges=18)
and=mcg.u2d(ang, input=1)
plot(and,layout="circle")
bar=mcg.barabasi(nodes=12,m=1)

bad=mcg.u2d (bar,input=1)
plot(bad,layout="circle")
ran=mcg.random(nodes=12,edges=18)
rad=mcg.u2d(ran, input=1)
plot(rad,layout="circle")
clu=mcg.cluster(nodes=15,cluster=3,edges=24)
cld=mcg.u2d(clu,input=c("A1","F1" "K1" ,"M1"))
plot(cld,layout="circle")

Creating data for directed and undirected graphs

For given graphs data belonging to the graph topology can be generated. The nodes can be seen as
variables for which several sample measurements are available. Correlations of the node data should
then match the given graph structure. If an undirected input graph is given it is converted internally
to an directed graph with one random input node and for this directed graph data are created. Data
creation is based on a Monte Carlo simulation as follows:

For each node at first random values for a normal distribution with mean 100 and a standard deviation
of 2 is created. Thereafter for each directed edge a new value for the node with incoming edges, the
target node, a new values is generated where the new value of this node is the weighted mean, 95%
of the new value comes from the target node and 5% of the value comes the outgoing source node.
Thereafter some noise is added to the data. The order in which the nodes influence is each other is
randomized in each iteration. This is repeated for all edges and several times. Finally the data for
each node are returned. Let’s now create some data, here 100 vectors representing simulations of






Figure 4: Random graph topologies



100 experiments for the given set of variables, for the graph G with the variables A-F created at the
beginning of this vignette:

set.seed(12345)
G.data=mcg.graph2data(G,n=100,iter=15,no0ise=0.41)
G.datal[,1:5]

## [,1] [,2] [,3] [,4] [,5]
## A 102.33121 100.74060 96.06913 100.76824 97.55173
## B 101.18910 102.96359 99.23977 106.70512 103.79380
## C 101.57205 100.52525 98.37525 104.63316 100.77369
## D 103.94836 101.09887 97.21639 101.76710 102.67711
## E 101.01607 100.49450 98.69186 103.56880 97.44582
## F  99.26722 99.69670 98.97887 101.85766 97.36206
## G 102.81596 101.42695 96.33849 100.72826 99.63801
## H 100.17403 99.90669 99.96257 98.74632 98.64264

Let’s now calculate the correlations between the variables A-F':

round (cor (t(G.data)),2)

## A B C D E F G H
## A 1.00 0.08 0.48 0.13 0.02 0.17 0.02 -0.03
## B 0.08 1.00 0.59 0.21 0.04 -0.10 0.00 -0.17
## C 0.48 0.59 1.00 0.43 0.11 0.15 -0.02 -0.15
## D 0.13 0.21 0.43 1.00 0.43 0.42 0.05 -0.12
## E 0.02 0.04 0.11 0.43 1.00 0.57 0.14 0.07
## F 0.17 -0.10 0.15 0.42 0.57 1.00 0.10 0.12
## G 0.02 0.00 -0.02 0.05 0.14 0.10 1.00 0.09
## H -0.03 -0.17 -0.15 -0.12 0.07 0.12 0.09 1.00

As you can see nodes connected by a directed edge, such as A with C, are strongly correlated with
each other. In contrast A and B are here uncorrelated as this is a directed graph and both nodes
are influencing C independently. If the edges would be in reverse direction, C would influence A and
B then A and B would be correlated. Exploring such pairwise correlations is quite a common task.
Therefor the package mcgraph offers a simple pairwise correlation plot function mcg.corrplot, below is
an usage example. For more sophisticated correlation plots we highly recommend the nice corrplot
package.”

As network reconstruction based on correlation matrices is a common research problem we added the
basic correlation threshold method to the package to construct a graph based on a given correlation
matrix. This is a simple pruning approach just visualizing high associations without distinction of
primary and secondary associations. In the resulting undirected graph every two nodes will be connected
if the association between both nodes exceeds the given R-square value. The default R-square for the
method is 0.04, representing positive or negative correlation higher than 0.2 or smaller than -0.2. As
this produces far too many edges in the graph we thereafter increase the threshold to 0.25 representing
absolute correlation values of more than 0.5, so strong associations. With this setting the original
graph can be restored demonstrating the usefulness of the method.

par (nfrow=c(2,2) ,mai=rep(0.3,4))

plot(G,main="Real Graph")

mcg.corrplot(cor(t(G.data)),text.lower=TRUE, pch.minus=18,main="corrplot")
G2=mcg.ct(cor(t(G.data)) ,rs=0.09)
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attr(G2,"layout")=attr (G, "layout")
plot(G2,main="Predicted Graph rs=0.09")
G2=mcg.ct(cor(t(G.data)) ,rs=0.25)
attr(G2,"layout")=attr(G, "layout")
plot(G2,main="Predicted Graph rs=0.25")

Real Graph corrplot

@ ©© ®

A B C D E F G H

A O

B 0.8 O

C 0.48 059 O

D 0.3 0.21 0.43 C X )

E 0.2 0.04 0.11 0.43 O

F 0.17-0.100.15 0.42 0.57

G 0.02 0.00-0.020.05 0.14 0.10

H -0.03-0.17-0.15-0.12 0.07 0.12 0.09

Predicted Graph rs=0.09 Predicted Graph rs=0.25
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In this small graph the correlation thresholding method can reconstruct the original graph topology if
a “good” threshold is choosen. The package provides a few more network reconstruction methods such
as mcg.1lvs using linear regression fwith stepwise forward selection, mvg.rpart using regression trees
and mvg.glmnet using Ridge, elastic net and Lasso regression. See below for more details on these
methods. For more complex graphs R packages with more advanced graph reconstruction methods
such as huge,’ qgraph {°] or PCIT® should be used. These packages provide more elaborated methods
to distinguish between direct (like A-C) and spurious associations (like A-D) in the network.
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Weighted graphs

Since version 0.4.3 of the mcgraph package it is as well possible to weight the edges of the graphs. The
higher the edge weights between the nodes of the graph, the higher the corresponding associations.
Let’s increase the edge weight for the connections between A and C and between E and F by 1.5, which
should increase the correlations.

par (mfrow=c(1,2) ,mai=rep(0.3,4), pty="s")

mcg.corrplot(cor(t(G.data)) ,text.lower=TRUE,pch.minus=18,cex.coeff=0.8,
main="Unweighted Graph")

G['A",'C']=1.5

G['E','F']=1.5

G.data=mcg.graph2data(G,n=50,iter=15,n0ise=0.4)

mcg.corrplot(cor(t(G.data)) ,text.lower=TRUE,pch.minus=18,cex.coeff=0.8,
main="Weighted Graph")

Unweighted Graph Weighted Graph

A B CDE F G H A B CDE F G H
A O A O
B oos (@) B oz (@)
C 0.48 0.59 Q C 0.65 053 O
D 0.3 021 0.43 O Q D 0.26 0.21 0.48 .
E 002 0.04 0.11 043 . E 008 0.15 0.12 0.17 .
F 0.17-0.100.15 0.42 0.57 F 0.1 001 0.10 0.56 0.63
G 0.02 0.00-0.020.05 0.14 0.10 G -0.230.13-0.10 0.07 -0.08-0.06
H -0.03-0.17-0.15-0.12 0.07 0.12 0.09 H 0.24 0.18 0.15 0.16 0.06 0.25 0.00

Figure 5: Unweighted vs weighted graph correlations

As you can see the correlation between A and C is much higher in the weighted graph than the
correlation between B and C. The gain in strength is dependent on the number of iterations, so how
often the neighbor nodes are influencing the target nodes. Below an example with the correlations
after 5, 10, 15 and 20 iterations.

par (mfrow=c(3,2) ,mai=rep(0.3,4), pty="s")
for (i in ¢(3,5,10,15,30,50)) {
G.data=mcg.graph2data(G,n=50,iter=1i,noise=0.4)
mcg.corrplot (cor(t(G.data)) ,text.lower=TRUE,pch.minus=18,cex.coeff=1,
main=paste("Weighted Graph",i,"iterations"))

3

The result shows that after some iterations the strength of the associations does only marginally
increase as there is a balance between the noise added in each iteration and the influence of the
neighbor nodes.
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Weighted Graph 3 iterations Weighted Graph 5 iterations

A B C D E F G H A B C D E F G H
A ®@ 00
-0.02 O B -0.19
0.18 0.33 C 044 023
0.02 0.17 -0.08 D 0.05-0.070.21
0.09 -0.08-0.03 0.12 O E 0.33-0.180.21 0.18 O
0.13 0.06 0.01 0.24 0.32 F 031 0.06 0.23 0.12 0.43
-0.08-0.01-0.03 0.02 —0.09-0.13 G -0.10-0.12-0.04 0.30 0.07 -0.01
-0.26-0.01-0.07 0.08 0.07 0.01 0.21 H -0.23-0.00-0.09-0.04-0.02-0.06 0.09
Weighted Graph 10 iterations Weighted Graph 15 iterations
A B C D E F G H A B C D E F G H
@ A @
0.22 o B 012 C X
0.70 0.53 O C 0.54 0.64 O
0.20 -0.05 0.40 C X ) D 0.26 0.40 0.46
-0.010.00 0.15 0.36 o E -0.07 0.05 -0.04 0.14 [ )
0.01 0.12 0.24 0.44 0.65 F -0.010.10 -0.09 0.30 0.75
-0.24-0.09-0.43-0.32 0.08 0.08 G -0.11-0.27-0.26-0.20 0.24 0.12
0.18 -0.12 0.02 —0.19 0.04 —0.10 0.03 H -0.11-0.32-0.19-0.25 0.04 -0.06 0.19
Weighted Graph 30 iterations Weighted Graph 50 iterations
A B C D E F G H A B C D E F G H
( X A 0000
0.00 O B 017 " X ) O
0.78 0.38 " X0 C 076 0.64 C X
0.48 0.21 0.59 C X ] D 055 0.53 0.69 C X )
0.25 0.16 0.31 0.48 o E 0.38 0.25 0.38 0.63 [ ]
0.19 0.16 0.22 0.53 0.82 F 0.35 0.38 0.43 0.74 0.75
-0.05-0.02 0.08 0.18 0.02 -0.13 G -0.070.12 0.03 -0.12-0.16-0.18
-0.08-0.10-0.15-0.06-0.03-0.10 0.08 H 0.16-0.130.02 0.07 0.03 0.03 -0.31

Figure 6: Monitoring of graph correlations after different iterations.
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Own data input matrix

Since version 0.4.3 it is as well possible to start the iterations with your own input data. This feature
can be as well used to monitor the increase in correlations over the iterations. Here an example which
monitors the increase in correlation for the correlations between A and C as well as the correlations
between B and C. As the weight for the A-C association is larger than that for the B-C association,
the association A-C should be stronger than that of B-C.

par (mfrow=c(1,2) ,mai=c(0.9,0.9,0.7,0.1))
set.seed(1234)
for (n in c(0.3,1.0)) {
g.data=matrix(rnorm(800,mean=100,sd=3) ,nrow=38)
corsAC=c(cor(t(g.data)) [1,3])
corsBC=c(cor(t(g.data)) [2,3])
corsAB=c(cor(t(g.data)) [1,2])
corsCD=c(cor(t(g.data)) [3,4])
for (i in 1:50) {
g.data=mcg.graph2data(G,iter=1,n=100,init=g.data,noise=n,code="C++");
corsAC=c(corsAC,cor(t(g.data)) [1,3])
corsAB=c(corsAB,cor(t(g.data)) [1,2])
corsBC=c(corsBC,cor(t(g.data)) [2,3])
corsCD=c(corsCD, cor(t(g.data)) [3,4])
+
plot(0:50,corsAC,type="1",ylim=c(0,1) ,xlab="iteration",ylab="r",
col="red",lwd=2,main=paste("noise:",n))
points(0:50,corsBC,type="1",col="blue",lwd=2)
points(0:50,corsAB,type="1",col="grey",lud=2)
points(0:50,corsCD, type="1",col="darkgreen",lud=2)
legend("topright",legend=c("AC", "BC", "AB","CD"),
col=c('red', 'blue', 'grey', 'darkgreen'),pch=15)

}
noise: 0.3 noise: 1
o ] o ]
— B AC — m AC
= BC ® BC
o0} (o0}
S = AB S AB
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o o M 4
< <
o | o
N N
o ] o |
S _| S _|
© T T T T T © 5 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration

Figure 7: Correlation changes at different iterations and different noise settings. The weight for the
edge A-C was set to 1.5 in this case, between A and B was no edge.
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Graphs with negative correlations

Since version 0.4 of the mcgraph package, it is as well possible to use -1 in an adjacency matrix to
indicate negative associations. In the example below our graph G is extended with a new node G
which is negatively associated with A. This as side effect leads to an imbalance of the influence of A
and B to C. For instance if A is constantly down-regulated by G, C depends very much on the low
values of A, but not on the much more available B.

In the plots the layout of the on the left plot does not look nice, as letter A is shown right, so again
here a own layout using a matrix of x and y coordinates is created:

par (mfrow=c(2,1) ,mai=rep(0.3,4))
set.seed(123)
G=matrix(0,nrow=7,ncol=7)
rownames (G)=colnames (G) =LETTERS[1:7]
GL'A','C']=1

Gl'B','C']=1

el'c','n']=t

G['D','E']=1

G['D','F']=1

G['E','F']=1

G['G',"A"]=-1

G

#Ht
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g=mcg.new(G)
plot(g,layout="'sam',main="sam(mon) layout")

lay=matrix(c(1,3, 1,1, 2,2, 3,2, 4,3, 4,1, 2.5,3),byrow=TRUE,ncol=2)
colnames(lay)=c('x','y")

rownames (lay)=LETTERS[1:7]

lay

##
#Ht
##
#Ht
##
##
##
##
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plot(g,layout=lay,main="custom layout")

15



sam(mon) layout

custom layout

Figure 8: Graph with negative correlations
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The more iterations are done, the stronger are the associations between the nodes/variables. If you
add more noise the weaker the associations. In the example above with 10 iterations, the correlation
for connected nodes are: -0.3, 0.55, 0.37, 0.43, 0.24, 0.47, 0.44, the average for those absolute values is:
0.4. See below an example with stronger associations due to more iterations and reduced noise.

data=mcg.graph2data(g,iter=25,n0ise=0.5)
kable(round(cor(t(data)),2), format="markdown",align="ccccccc",
caption="Correlations with iter=25, noise=0.5")

Table 1: Correlations with iter=25, noise=0.5
A B C D E F G

1.00 -0.02 0.87 054 018 0.14 -049
-0.02 1.00 030 0.18 -0.11 0.09 -0.08
0.87r 030 100 0.60 0.15 0.17 -0.38
0.54 0.18 060 1.00 046 048 -0.18
0.18 -0.11 0.15 0.46 1.00 0.63 0.00
0.14 0.09 017 048 0.63 1.00 0.04
-0.49 -0.08 -0.38 -0.18 0.00 0.04 1.00

QEHoEHOQW >

In the example above the correlations for connected nodes are: -0.49, 0.87, 0.3, 0.6, 0.46, 0.48, 0.63,
the average for those absolute values is: 0.55.

Correlations can be weakend again by adding more noise to the data:

data=as.matrix(mcg.graph2data(g,iter=25,no0ise=1.2))
kable(round(cor(t(data)),2), format="markdown",align="ccccccc",
caption="Correlations with iter=25, noise=1.2")

Table 2: Correlations with iter=25, noise=1.2
A B C D E F G

1.00 0.02 0.83 041 0.09 0.18 -0.42
0.02 1.00 032 022 0.09 0.02 -0.10
0.83 032 100 050 0.08 0.16 -0.36
0.41 0.22 050 1.00 0.28 0.37 -0.08
0.09 0.09 0.08 0.28 1.00 0.56 -0.01
0.18 0.02 0.16 037 056 1.00 -0.08
-0.42 -0.10 -0.36 -0.08 -0.01 -0.08 1.00

QHETQWE >

Now the correlation for the connected nodes are: -0.42, 0.83, 0.32, 0.5, 0.28, 0.37, 0.56, the average for
those absolute values drops down now to: 0.47.

Graph reconstruction methods

The mcgraph package provides currently four methods to construct network graphs from data

e mcg.ct - simple edge pruning method based on correlation threshold
e mcg.lvs - linear regression with greedy stepwise forward variable selection as long as the model
improves
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e mcg.glmnet - using Ridge, elastic net and Lasso regression, the latter is prefered as it reduces
insignficant coefficients directly to zero

e mvg.rpart - using regression trees and connecting nodes which are required for prediction in one
or the other direction

Let’s apply those methods on a simple random graph where we now the structure:

par (mfrow=c(2,1), mai=rep(0.1,4))

set.seed(12346)

ang=mcg.u2d (mcg.angie(nodes=10,edges=16) ,input=c("B1","F1"))
lay=mcg.layout (ang,mode="frg", seed=123)
plot(ang,layout=lay)

ang

#i#t A1 B1 C1 D1 E1 F1 G1 H1 I1 J1
# A1 O O O 1 0 O O 0 1
## Bl
## C1
## D1
## E1
## F1
## G1
## H1
## I1
## J1 O 0

## attr(,"class"
## [1] "mcgraph"
## attr(,"type")
## [1] "angie"

## attr(,"mode")
## [1] "directed"

O O O O O O O+
O O OO O O O o o

O O O O O O O+
O OO, OO OO
O O O O O O O o o
O O O O O O O O+
O OO, OFr PP, OO
O OO r OO kr OO
O L OFr OO OO OO Oo

0
1
0
0
1
0
0
0
0
)

data=mcg.graph2data(ang,n=100,iter=10,n0ise=0.5)
mcg.corrplot(cor(t(data)),text.lower=TRUE, cex.coeff=0.8)

Let’s now predict the graph using for instance mcg.rpart.
datal[1:4,1:4]

## (,1] [,2] (,3] [,4]

## A1 100.8565 99.90374 99.63477 103.5102

## Bl 100.8384 99.19473 101.89638 103.6470

## Cl 102.6602 99.62100 99.63178 100.4033
## D1 100.1454 99.76125 96.36313 101.5881

ang.rpart=mcg.rpart (t(data),rs=0.04)
as.matrix(ang.rpart)

## A1 B1 C1 D1 E1 F1 G1 H1 I1 J1

## A1 0 1 0 0 0 0O O O 1 O
##B1 1 0 0 0 O0-1 1 1 O O
#C1L 0 0 0 1 0 0O 1 O O O
##D1 0 0 1 0 O 1 O O 1 O
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Al B1 c1 D1 El F1 Gl H1 11 J
" O O
Bl 045 O
Cl 014 035
DI 032 011 035 )
El 006 011 024 020
F1  -0.03 -001 009 045 0.9

D
4

Gl 0.18 0.47 0.18 -0.09 0.30 -0.10 C

H1 0.16 0.16 0.07 0.16 0.40 -0.03 0.45

11 0.47 0.22 0.08 0.40 0.24 -0.01 0.31 0.29

J1 0.31 0.22 0.13 0.14 0.08 -0.02 0.41 0.38 0.25

Figure 9: A plot made by the mcg.angie function with according correlation matrix of generated
synthetic data.
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## E1 0 0 0 0 0O O O 1 1 1
##F1 0-1 0 1 0 0 O O 1 O
#G1L 0 1 1 0 0 0 0 1 O 1
##H O0 1 0 0 1 0 1 O O O
##I1 1 0 0 1 1 1 0 O O O
##J1 0 0 0 0 1 0 1 O O O

Let’s calculate the number of correctly predicted edges (TP) and the number of wrongly predicted
edges (FP):

args (mcg.accuracy)

## function (g.true, g.pred)
## NULL

round (unlist(mcg.accuracy(ang,mcg.rpart(t(data),rs=0.04))),3)

## TP FP TN FN Sens Spec BCR F1
## 9.000 6.000 23.000 7.000 0.562 0.793 0.678 0.581
## MCC norm_MCC
## 0.361 0.681

round (unlist (mcg.accuracy(ang,mcg.glmnet (t(data) ,rs=0.04))),3)

#i# TP FP TN FN Sens Spec BCR F1
#it 12.000 2.000 27.000 4.000 0.750 0.931 0.841 0.800
## MCC norm_MCC

#i# 0.704 0.852

round (unlist (mcg.accuracy(ang,mcg.lvs(t(data) ,rs=0.04))),3)

#it TP FP TN FN Sens Spec BCR F1
#it 11.000 3.000 26.000 5.000 0.688 0.897 0.792 0.733
## MCC norm_MCC

#i# 0.604 0.802

round (unlist (mcg.accuracy(ang,mcg.ct(t(data) ,rs=0.04))),3)

it TP FP TN FN Sens Spec BCR F1
## 14.000 7.000 22.000 2.000 0.875 0.759 0.817 0.757
## MCC norm_MCC

#i# 0.608 0.804

As the mcgraph object created from these graph generators returns have as well a r.squared attribute
we can apply the r-square threshold rs as well on those graphs from low to high. Here an example:

ang.rpart=mcg.rpart (t(data),rs=0.001)
round (attr(ang.rpart,"r.squared"),3)
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## Al B1 C1 D1 E1l F1 G1 H1 I1 J1

## A1 0.000 0.112 0.000 0.000 0.000 0.000 0.000 0.000 0.294 0.000
## B1 0.076 0.000 0.000 0.000 0.000 0.070 0.332 0.064 0.000 0.000
## C1 0.000 0.014 0.000 0.145 0.034 0.000 0.341 0.000 0.000 0.000
## D1 0.018 0.000 0.080 0.000 0.038 0.327 0.000 0.000 0.086 0.018
## E1 0.000 0.010 0.064 0.029 0.000 0.000 0.018 0.205 0.172 0.000
## F1 0.000 0.000 0.000 0.319 0.000 0.000 0.000 0.000 0.061 0.000
## G1 0.015 0.348 0.004 0.000 0.000 0.000 0.000 0.148 0.000 0.028
## H1 0.000 0.000 0.000 0.000 0.134 0.000 0.288 0.000 0.014 0.000
## I1 0.126 0.000 0.039 0.327 0.000 0.000 0.026 0.000 0.000 0.000
## J1 0.000 0.000 0.034 0.000 0.053 0.000 0.353 0.032 0.000 0.000

By starting from a r-square threshold from 0.001 to 0.01, 0.04,0.09, 0.15,0.2,..0.5 we can measure the
Specificity and the Sensitivity and generate a ROC curve and determine the AUC.

Here some example code to get started (from the posting: https://stats.stackexchange.com/questions/
145566 /how-to-calculate-area-under-the-curve-auc-or-the-c-statistic-by-hand ):

n <- 100L

x1 <- rnorm(n, 2.0, 0.5)

x2 <- rnorm(n, -1.0, 2)

y <= rbinom(n, 1L, plogis(-0.4 + 0.5 * x1 + 0.1 * x2))
tab=table(y)

tab

## y
# 0 1
## 33 67

mod <- glm(y ~ x1 + x2, "binomial")

probs <- predict(mod, type = "response")
head(data.frame(probs=probs,y=y))

## probs y
## 1 0.7065179 0
## 2 0.5798900 1
## 3 0.6477790 0
## 4 0.6671542 0
## 5 0.5459149 1
## 6 0.5755096 0

head (probs[y == 1L])

## 2 5 8 9 12 13
## 0.5798900 0.5459149 0.6140187 0.6197740 0.7304849 0.6025044

head(probs[y == OL])

#i# 1 3 4 6 7 10
## 0.7065179 0.6477790 0.6671542 0.5755096 0.6968906 0.6336188
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combinations <- expand.grid(positiveProbs = probs[y == 1L],
negativeProbs = probs[y == OL])
head(combinations)

##  positiveProbs negativeProbs

## 1 0.5798900 0.7065179
## 2 0.5459149 0.7065179
## 3 0.6140187 0.7065179
## 4 0.6197740 0.7065179
## 5 0.7304849 0.7065179
## 6 0.6025044 0.7065179

mean(combinations$positiveProbs > combinations$negativeProbs)

## [1] 0.584351

dim(combinations)

## [1] 2211 2

tab[1]*tab[2]

## 0
## 2211

tail (combinations)

#Hit positiveProbs negativeProbs
## 2206 0.5862598 0.6950567
## 2207 0.6614414 0.6950567
## 2208 0.7927703 0.6950567
## 2209 0.6542261 0.6950567
## 2210 0.6651004 0.6950567
## 2211 0.7112551 0.6950567

Imputation of missing values

Often data are incomplete and we have missing values. Many mathematical procedures however require
that we have complete data. In this case we have to guess/impute the missing values. Recommended
approaches in this case are suing regression for numerical and classification for categorical data to
guess the missing values. Simple replacement of the missing values for instance with the median or the
mean which is often done does not produce vera good results. Better approaches are decision trees and
the k-nearest neighbour approach where the missing values are replaced with the mean of exisiting
values for the k-most similar samples were the value is missing. Below an example where we introduce
some NA’s in the iris data frame and then re-impute the values and compare the outcomes.

First lets introduce some NA’s:
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data(iris)

set.seed(123)

ir=as.matrix(iris[,1:4])

ir.mv=ir

# introduce 5 percent NA's
mv=sample(1l:length(ir),as.integer(0.05*length(ir)))
ir.mv[mv]=NA

summary (ir.mv)

##  Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.400 Min. :2.200 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.300 Median :1.300
## Mean :5.857 Mean :3.054 Mean :3.745 Mean :1.205
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.200 Max. :6.900 Max. :2.500
## NA's 27 NA's :10 NA's 7 NA's 6

Let’s now impute the missing values using the median, regression trees and the knn approach.

ir.imp.med=mcg.impute(ir.mv,method="median') # not good
ir.imp.rpart=mcg.impute(ir.mv) # method rpart (default)
ir.imp.knn=mcg.impute(ir.mv,method="knn')

We can then measure the quality of the imputations using the Root mean squared error, the smaller
the error, the better and as well the correlation, the higher the better:

rmse = function (x,y) { return(sqrt(sum((x-y)~2))) }
rmse(ir[mv] ,ir.imp.med[mv]) # should be high

## [1] 6.09508

rmse (ir[mv] ,ir.imp.rpart[mv]) # should be Low!

## [1] 1.845312

rmse (ir[mv],ir.imp.knn[mv]) # should be Llow!

## [1] 1.764426

cor(ir[mv],ir.imp.med[mv])

## [1] 0.806656

cor(ir[mv],ir.imp.rpart[mv])

## [1] 0.9843221

cor(ir[mv],ir.imp.knn[mv]) # should be high!

## [1] 0.9852723
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The rpart library can be as well used to impute factor variables using classification trees.

# factor wartables

data(iris)

ciris=iris

idx=sample(l:nrow(ciris),15) # 10 percent NA's
ciris$Species[idx]=NA

summary (ciris)

##  Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000  Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057  Mean :3.758  Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. 2.500
#i# Species

## setosa 147

## versicolor:41

## virginica :47

## NA's 115

##

##

ciris=mcg.impute(ciris,method="rpart")
table(ciris$Species[idx],iris$Species[idx])

##

Hit setosa versicolor virginica

## setosa 3 0 0

##  versicolor 0 9 0

##  virginica 0 0 3

As you can see the result is quite good.

Benchmarking
As speed is an important issue for larger data sets the package contains as well a simple method,

mcg.timeit, to measure the executation time of a R expression. As you can see below the standard
C++ coded method mecg.lvs is much faster than the R counterparts.

data(swiss)
options(warn=-1)
mcg.timeit (expression(mcg.lvs(swiss, rs=0.1, output='mcgraph')))

## [1] 0.0014448166 0.0006530285 0.0004026890 0.0002567768 0.0002584457

mean(mcg.timeit (expression(mcg.lvs(swiss, rs=0.1, output='mcgraph'))))

## [1] 0.0004004002
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mean(mcg.timeit (expression(mcg.rpart(swiss, rs=0.1))))

## [1] 0.08229141

mean(mcg.timeit (expression(mcg.lvs(swiss, rs=0.1, output='mcgraph',code="R"))))

## [1] 0.0636569

options(warn=0)

Summary

This vignette illustrates a few use cases for the package mcgraph, how you can create regular or random
graphs and how to create data for those graphs where the correlations of the nodes/variables represent
the graph structure. The methods for visualizing graphs and the data correlations are as well shown.
For more details on the methods have a look at the R help packages provided with this package.

For much more sophisticated methods dealing with graphs and correlations I recommend to use the
igraph and the corrplot R packages.

Overview on functions of the mcgraph package

The following functions are available in the mcgraph package:

1. functions to generated graphs with a defined topology

o mecg.band create a band/chain graph

e mcg.circular create a circular graph

e mcg.cross create hub like graph where non-hub nodes are in chains

e mcg.lattice create a grid like graph, optionally with some centralizing edges pointing towards
the graph center

e mcg.hubs create one or more graph components with a central hub node and nodes directly
attached to this hub

e mcg.new create graph based on a given adjacency matrix

2. functions to generate random graphs

e mcg.angie create random graph with all nodes in one component

e mcg.barabasi create random graph following the Barabasi-Albert model

e mcg.random create random graph were all edges have equal probabilities to be generated

e mcg.cluster create graph with several components, where nodes of each component are
densely connected to each other

3. functions to create directed from undirected graphs and vice versa

e mcg.u2d convert undirected into directed graph using defined or random input nodes
e mcg.d2u convert directed into undirected graph where any directed edge becomes an
undirected one

4. function to generate data for graphs
e mcg.graph2data create data for graphs
5. S3 class methods to analyze and visualize mcgraph objects

e plot plot graphs
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e degree get degree centralities for graph nodes

e density determine ratio of edges to all possible edges

e summary summarize basic graph properties

e as.matrix extract the adjacency matrix of a mcgraph object useful for use the graph with
other R packages

6. network construction functions

e mecg.ct - creates mecgraphs from correlation matrices with a given threshold of R-square
e mcg.lvs - creates mcgraphs using greedy selection of linear model variables

e mcg.glmnet - create mcgraphs using Ridge, elastic net or Lasso regression

e mcg.rpart - create mcgraphs using rpart regression trees

7. general purpose functions

e is.mcgraph checks if a given object is a mcgraph

e mcg.autonames create names for nodes automatically

e mcg.corrplot create a simple correlation plot of pairwise correlation

e mcg.components extract graph components, unconnected groups of nodes
e mcg.impute impute missing values for instance using decision trees or knn
e mcg.shortest.paths determine path lengths between nodes

e mcg.timeit measure executation time for a given R-expression
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