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Interesting attempts to determine whether and to what
extent social deprivation has an influence on the phys-
ical development of young individuals have often been
undertaken. In most cases, children of the same age, but
from different social classes, were measured in certain
districts, especially in terms of body length and weight,
and the mean values of the two were compared. On
the one hand, children from elementary schools, or-
phanages, vacation-colonies, etc. were compared with
regulars of the educational institutions preferred by the
”higher” classes (middle-class schools, grammar schools
etc.) on the other. Such surveys are available from Ger-
many and abroad. Table 1 (prepared from information
provided by L. Hoesch-Ernst) gives an overview of the
results. In each column of this table, the mean value
for the respective body measurement of children of the
”higher” classes is listed in the first place, that of chil-
dren of the ”lower” classes in second place; the result of
the subtraction, then, gives the difference attributed to
the social influence. This difference, as can be observed,
is almost remarkably positive, in length as well as in
weight, in boys as well as in girls, in each of the ages
and each of the countries. It has been concluded that
the unfavourable social conditions of the poor popula-
tion affect the growth in length and weight of children.
According\breaktitlepage to Rietz, this impairment is a
developmental delay. The children of the affluent are, so
to speak, ahead of their less well-off peers in develop-
ment. That the latter lag behind is attributed partly to
poverty and the associated deprivations of food and care,
as well as to overexertion, and partly to the ”childhood
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diseases raging among the youth of the
poorer classes” (Rietz).
However, if one takes a closer look at the
data, it becomes obvious that the results of
the observers differ from each other. The
differences found are partly small (e.g.,
Bowditch and Mac Donald), partly large
(Pagliani, Rietz), partly clearly increasing
with age (Roberts, Michailoff), partly de-
creasing (Hertel) and partly fluctuating
irregularly.
Thus, the presented question seemed to
be worth further exploration. Such a study
was attempted based onmaterial aboutMu-
nich elementary school children, which
was collected by the author in cooperation
with some colleagues. The procedure of
this collection is reported in the two previ-
ous publications by Riedel and Skibinsky.
The author proceeded to compare the
schoolchildren belonging to different so-
cial classes in a different way than had
been done before. He did not simply com-
pare the regulars of a ”higher” school with
those of an elementary school or subur-
ban school, but sorted the entire material
from three Munich elementary schools,
whose visitors belong to different social
classes, according to the occupation of the
parents. Of course, it will happen that in
some individual cases the ”standard of life”
in the household of the student, which is
the focus, will be over- or underestimated.
However, we consider this procedure to
be superior to the usual one – at least for
our conditions in Munich, where, due to
the often exemplary building and operat-
ing conditions of the public elementary
schools, a considerable number of children
of wealthy people can be found in many of
them.
In any case, with a fair degree of certainty,
two social classes could be identified from
the total number of counter cards, namely
the rich and affluent middle class (Class
I) and the working class (Class III). The
rest were kept as middle class (II). The

procedure of this allocation is explained
by the following examples. Class I was as-
signed children of Pharmacists, Doctors,
Bank Officials, Railway Administrators,
Builders, Delicatessens, Railway Secre-
taries, Factory Owners, General Managers,
Innkeepers, House Owners, Hotel Owners,
Engineers, Inspectors, Painters, Chapel
Masters, ‘Higher’ Teachers, Master Crafts-
men, Officers, Privateers, Professors, etc.
Class II was assigned to the children of
assistants of the various trades, of hired
hands, clerks, servants, factory workers,
unskilled workers, invalids, coachmen,
waiters, day labourers, watchmen, road
workers, switchmen, etc., and also most
illegitimate children. Children of fore-
men, accountants, chauffeurs, printers,
electricians, field weavers, hairdressers,
gardeners, janitors, plumbers, machinists,
small tradesmen, postmen, postal workers,
guards, tramway conductors, etc. are in-
cluded in class II.
Herr Professor I. Kaup, the lecturer for so-
cial medicine at the local university, had
the kindness to give me advice on this as-
signment, for which I would like to thank
him at this point.
The present contributions to the question
should differ from those of the predeces-
sors mainly by the fact that they do not
limit themselves to the calculation and
comparison of themean values, but present
the totality of the values themselves clearly
and comparably. This is made possible by
the methods of the ‘collective measure
theory’. Which advantages these methods
have, compared to the simple calculation
of arithmetic mean values or compared to
the indication of maximum and minimum
values, has been explained in the already
quoted publications of Riedel and Skibin-
sky, as well as in many other places, so it
does not need further explanation here.
The author is at a disadvantage to his pre-
decessors because his material includes
only the enrolment period itself, not the



L. Wilke • Supplement: A non-literal translation • HBPH 2021 Vol. 3 • pp. 1–14 3

higher stages of development. For the
school enrolment age, however, this mate-
rial is much larger thanmost other surveys.
Measurements and weightings of older
children were unfortunately not available,
or not in sufficient numbers. However, es-
pecially the age at which children start
school has often been ignored. About the
influence of the social environment on
physical development in the 6th and 7th
year of life, the youngest researcher (Rietz)
brings, in addition to his data, only those of
Bowditch. I added Axel-Key’s data to both
series and converted all the material to
naked weight to make it comparable with
my own. The overview for this youngest
age can be seen in Table II. Here, one can
see differences in principle, too. Accord-
ing to Axel-Key, the below-average size of
working-class children in Sweden does not
exist at the time of school enrolment but
develops only during school attendance
(see also the curves in the author’s original
report) –whereas in Berlin, according to Ri-
etz, it is already present in school recruits
as a result of developmental retardation
that arose in early childhood and only per-
sists during the school period. Presumably,
however, these differences are only due to
differences in methodology and material
procurement.
Finally, the present surveys differ from
(most of) the earlier ones in that the body
measurements are strictly net values (sur-
veyed without shoes and clothes) and they
are also reduced to certain age groups,
namely to the age of exactly 6 or 7 years.
All predecessors have included ”n years
old” children in the group, per language us-
age. Consequently, those who were more
than n and less than n+1 years old were
included, too. With such a procedure, how-
ever, one is not able to relate the calcu-
lated average body measurements to any
particular age group and runs the risk of
comparing unequal data. The assumption
that the children examined are evenly dis-

tributed over the age range between n and
n+1 years, i.e. that they have a mean age of
n+1

2
years, must by no means apply to the

school recruits.
The material was processed in the fol-
lowing way: firstly, the individual cases,
and/or counter cards were distributed into
the status classes I to III (according to the
procedure explained above), within this
distribution they fell again into two age
groups (6 and 7 years). Thus, 6 number
series were obtained for each sex. The vari-
ation of these number series was now to
be represented according to the rules of
the ‘collective measure theory’. For this
purpose, the mean values, the error sum
squares – and from these the parameters
of the Gaussian curve (h), were calculated.
The procedure is described in detail in the
repeatedly cited works of Riedel and Skib-
insky.
The ordinate values for the construction of
the error curve itself had been determined
by Riedel and Skibinsky using error inte-
gral tables. I used another method, namely
the direct calculation from the Gaussian
curve equation; and with the application of
certain tricks, my method does not prove
to be time-consuming.
When constructing the Gaussian curve, the
following is of note: The unit of measure-
ment of the abscissa axis is the same as the
unit of measurement of the corresponding
body dimension, i.e. for body length the
centimetre, for bodyweight the kilogram.
If in the adjacent Figure 1 the division at
the abscissa axis had been made accord-
ing to such units, then, for example, the
abscissa of the curve point M1 = XO1 = 3,
that of the point M2 = XO2 = 4.
The y of the Gaussian equation expresses
the probability that any individual case of
the series concerning the considered char-
acter, e.g. the body length or bodyweight,
falls into that one unit wide step, the centre,
which is given by the value x. If, for exam-
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Figure 1 An example of a Gaussian curve.

ple, in the case represented by the above fig-
ure, the x1 = XO1= 3, then by substituting
this value 3 into theGaussian equation, one
would obtain y1, which expresses the prob-
ability that any single case of variation con-
cerning the body dimension in question is
located within the boundaries A and B (AB
= one unit of measurement).
If one does not want to express this proba-
bility, but the proportional absolute num-
ber to the total of n cases to be expected
within the unit of measurement in ques-
tion, one has only to calculate nx. To make
the Gaussian curve of different variation
series comparable with each other, it is
recommended to choose the n evenly, ap-
proximately equal to 1000; then 1000 y
directly indicates the per mill number of
cases to be expected in the respective stage
according to the error law.
If one has made the increments accord-
ing to other dimensions than the unit of
measurement, e.g. according to half units
of measurement (as Skibinsky did), then
one will of course find other values when
calculating the y directly from the curve, in
the chosen example it would be double the
values as in the procedure with the integral
tables.

Figure 2 Variation of body weight of six-year-old girls of

three different social status classes, represented by the Gaus-

sian curves calculated from numerical material.

Results

The main results of analysing our material
are as follows. In total, the data of 1843 girls
were utilized. This total material is divided
into social and age groups as summarized
in Table 2.
The arithmetic means of body measure-
ments in these 6 groups are summarized in
Table 3.
It can be seen that both body length and
body weight are on average not inconsid-
erably greater in the children of the higher
classes (Class I) than in the children of the
working class (III). This is true for both con-
sidered age groups. The average measure-
ments for the social middle class (II) are, as
expected, between those for classes I and II,
but close in on the latter.
So far, our result is the same as that of all
the preliminary examiners. The increase in
body measurements from class II to class I
is summarized in Table 4.
According to this, the difference between
the two classes decreases somewhat in ab-
solute and relative terms in the course of
the first school year. A balance seems to
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Table 2 Social and age groups of the data of 1843 girls.

Social calss Girls age 6 Girls age 7 Total number

I 174 = 18.3% 176 = 19.7% 350

II 246 = 25.9% 281 = 31.5% 527

III 530 = 55.8% 436 = 48.8% 956

950 = 100% 893 = 100% 1843

Table 3 Arithmetic means of body measurements.

Body height Social class Age 6 Age 7

I 111.8 115.8

II 110.1 113.2

III 108.1 112.5

Body weight Social class Age 6 Age 7

I 19.4 20.5

II 18.7 19.3

III 18.1 19.4

Table 4 Increase in body measurements from class II to class I.

Age 6 Age 7

Body height 3.7 cm = 3.42%1 3.3 cm = 2.93%1

Body weight 1.3 kg = 7.18% 1.1 kg = 5.67%

1 Referring to the body measurement of the class III = 100.

be approaching, which speaks for a cause
that lies further back in time and does not
continue to have an effect or does not have
an effect to the same extent as before. If
one remembers that the morbidity of acute
contagious infectious diseases of children
reaches its peak only at the age of 5 to 9
(in total, according to Prausnitz, at the age
of 7), one will not be able to assume that
a higher frequency of these diseases in the
children of the working population is the
essential cause of the differences in length
and weight found between the two classes.
This data is substantially supplemented by
the comparative presentation of the total
variation in the form of Gaussian curves.

Concerning bodyweight (of the 6-year-old
girls), reference is made to Figure 2 and the
general table (A).
Here one sees on the uniform abscissa scale
the 3 curves relating to social class I, II and
III. For the explanation of this representa-
tion for readers not familiar with the col-
lective measure theory, the following is of
note: The base of the figure carries a scale
of the body weight, divided into kilogram
units. On the left are the lowest weight val-
ues found in the total material, on the right
the highest. Above this scale, the Gaussian
curves rise in their characteristic symmet-
rical form, doubly curved in each half and
asymptotic towards the base.
The height of the individual curve points
above the base is measured at a vertical
scale and gives the relative number – in
our case the per mill number – of encoun-
tered cases in the weight increment. If, for
example, a vertical line erected above the
base point ”23” intersects the curve I at a
height that approximately corresponds to
the point ”60” on the height scale, it means:
out of 1000 6-year-old girls of social class
I (status of the wealthy), one had a body-
weight of about 23kg (ie.: more than 22.5
and less than 23.5kg) Or, if the perpendic-
ular above the base point ”17” reaches the
curve II at the height point ”130”, it means:
130 per mil of the 6-year-old female school
children belonging to the middle class had
a bodyweight of about 17kg.
The curves consistently start flat and end
low again, i.e.: the lowest and the highest
values of the body weight are relatively
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rare and become rarer and rarer the more
they approach the absolute maximum and
the minimum, respectively. The curves, be-
coming steeper at the beginning, rise and
reach a certain peak; i.e.: the occurrence
of weight values approaching the average
becomes more frequent the more this ap-
proach occurs, and the frequency reaches
its maximum, the peak value, for weights
grouped around the arithmetic mean itself.
These are the characteristics common to
all ”random” variations, encompassed by
the law of errors, whose geometrical ex-
pression is the Gaussian curve and whose
mathematical expression is the Gaussian
equation.
If we now compare the three curves of the
three different status classes among each
other, we find the following:
1. Curves III to I shift on the basis in toto
more and more to the right; i.e. not only
the average values of the bodyweight be-
come higher with the ascending status of
the child’s parents, but in the entire varia-
tion the influence of weight through social
conditions expresses itself evenly. For each
of the lower weight classes, there are fewer
cases in class I, for each of the high weight
classes more cases than in class II or even
III.
2. Although curves III to I unmistakably
show a common form-type, as they belong
to the same ”family of curves”, they differ
in that curve III rises steepest and reaches
the highest peak, while curve I remains
flatter and has a lower peak; and curve
II occupies quite exactly a middle position.
The relative frequency of themost frequent
weight values thus decreases and that of
the rarer values increases with ascending
status, or in other words: the variation be-
comes wider the higher the social status of
the children or child parents is.
The procedure according to the collective
measure theory provides exact measure-
ment figures for the width of the variation.
As such, for example, can be considered

Figure 3 Variation in body weight of seven-year-old girls of

two different status classes represented by the Gaussian curves

calculated from numerical material.

the average deviation of the single value,
which is calculated from the error sum of
squares ẟ2 and the total number of cases n
can be calculated according to the formula

𝑓 = √
∑ ẟ2

𝑛−1

This value 𝑓, which, by the way, can also be
seen on the curve diagram (half the width
of the curve at the height of its inflexion
point) amounts to the following for the vari-
ation of the bodyweight of the 6-year-old
girls in our case:
• in social class III 2,198
• in social class II 2,412
• in social class I 2,637;

So, it indeed shows a regular increase. The
parameter of the Gaussian curves (h) be-
haves reciprocally, which is also called the
precision constant of the variation.
Its values in our example are the following:
• for social class III 0,3217
• for social class II 0,2932
• for social class I 0,2681

Completely analogous ratios result when
comparing the variation of body weight
in the higher age group of girls (7 years),
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Figure 4 Overview-Table: Data on variation in body measurements by social position. A. Weight, B. Length (divided into 6 and 7 years

respectively).

which is shown in Figure 3. Here, too, the
variation increases with increasing age, as
the following data shows in Table 6.
However, the numbers for the middle class
come very close to those for the I. class.
Concerning the variation of body length,
about the same could be found. Here, too,
theGaussian curves shift to the right in toto
with ascending class. Again, the variation
is much wider in the wealthy class (I) than
in the working class (III). This is true in
both age groups, as can be seen in figures 4
and 5 and the figures of the overview table
(B).
The data obtained for the social middle-
class II also takes an intermediate position
if the two age classes are considered to-
gether; otherwise, however, they deviate
from the rule – probably as a result of a

Table 6 Variation of increases.

Body weight of 7-

year-old girls
f h

Social class III 2.178 0.3247

Social class II 2.467 0.2866

Social class I 2.468 0.2865

Figure 5 Variation of body length of six-year-old girls of two

different status classes, represented by the Gaussian curves cal-

culated from numerical material.

random bias expressed in the relatively
small material.
To make the range of variation of differ-
ent series comparable among themselves,
it has been suggested to express it as a
percentage of the mean value of the body
measure concerned. If we proceed in this
way, we obtain the following indices of
the range of variation (see Table 7), which



8 L. Wilke • Supplement: A non-literal translation • HBPH 2021 Vol. 3 • pp. 1–14

Table 7 Indices of the range of variation.

Variation of Girls Class I Class III

Age 6 5.46% > 5.04%
Body height

Age 7 5.16% > 5.05%

Age 6 13.58% > 12.11%
Body weight

Age 7 12.02% > 11.23%

are quite comparable among themselves
(100 𝑓

𝑀
).

Here, as expected, bodyweight turns out
to be the far more variable measure com-
pared to body length. Furthermore, the
difference in the range of variation of the
two body measurements by social position
is also clearly visible in this table.
How, then, may the limitation of the range
of variation in the social lower-class be
explained? It seems to us quite probable
that this has nothing at all to do with the
social situation as such, but is due to the
greater homogeneity of the material in
the working-class population in terms of
ethnicity and nation. There is no doubt
that in the wealthy circles (among offi-
cers, civil servants, higher teachers, artists,

Figure 6 Variation of body length of seven-year-old girls of

two different status classes, represented by the Gaussian curves

calculated from numerical material.

merchants, factory and hotel owners, etc.)
there is greater freedomof movement; over-
all, they constitute an ethnologically less
homogeneous mass.
It has been observed that the children of
the poorer classes are smaller and lighter
than those of the more affluent. The ques-
tion now iswhether the reduction in length
and weight occur to the same extent, or
whether one predominates. Data on this
is available from Rietz. Rietz calculated
the so-called centimetre weight. This mea-
sure indicates how many grams of body
weight is allotted to one centimetre of body
length. It shows that in his affluent class,
the bodyweight of boys and girls was con-
sistently considerably higher than in the
corresponding age group of the poorer
class. From this, it was concluded that chil-
dren of the poor have not only a shorter
length and a lower weight, but are also
”worse developed”. Samosch refers to the
children of the well-to-do as ”better off in
that respect.” This does not change, even if
one replaces the gross weights (Rietz) with
net weights (by subtracting the weight of
clothing) and then converting the data of
Rietz and other authors, as is done in Table
8. The centimetre weight is almost without
exception – also according to the author’s
surveys – lower in the working class.
The assumption that the proportionality
of these children is disturbed compared to
the wealthy in the sense of a lower devel-
opment of width, that those are, in a word,
leaner and more slender, is an inaccurate
one. The weight in centimetres cannot be
used to compare the body proportions of
individuals of different heights if one does
not want to run the risk of great deception.
This has been extensively justified and
shown by Matusiewicz and others. In the
present case, the centimetre weight was
also misleading. If one calculates a mea-
sure for the length-weight ratio, which is
not subject to the objections made by the
mentioned author, unlike, for example, the
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Figrue 7 Original table of mean body measurements comparatively collected from school recruits of different social classes. (In each

category, the first number refers to the socially higher, the second to the lower status).

Livi index, one finds exactly the opposite.
The Livi index, as can be seen in the lowest
bars of Table II, is almost without excep-
tion, according to calculations from all
available surveys, including ours, smaller
in the children of the affluent class than
in the children of the working class, i.e.
the latter are the relatively bulkier, by no
means the leaner.
This fact does not seem to be without
significance for the whole question of un-
dersizedness in social misfortune. It opens
the possibility to consider that it is perhaps
not at all or only partly a ”developmen-
tal disorder” in this class; it could also
be the predominant plus variation in the
socially ”higher” classes that is atypical,
attributable to certain environmental in-
fluences. An increased, but on average not
completely proportional, i.e. somewhat
one-sided precipitated growth in length
does not have to mean a particularly ad-
vantageous moment in the physical devel-
opment of the wealthy class.
If one calculates the centimetre weight on
a larger number of individual cases, one
easily recognizes the influence which the

absolute body length value has on the size
of the index. The high centimetre weights
are generally found in individuals with
greater body length – completely indepen-
dent of true body proportions. If the Livi
indices are calculated individually in the
same way, the factor of absolute length
is nearly eliminated. However, it is not
completely eliminated. It is still somewhat
noticeable in the opposite direction to the
centimetre weight. The taller individuals
tend to have a lower Livi index. This be-
comes also explainable if one remembers
the elevation originating from Quételet
that with proportional development of the
human body the second potency of the
bodyweight increases with the fifth po-
tency of the body length. Accordingly, one
arrives at the following overview (see Table
8).
It can be seen that a much smaller error
than one makes when using the centime-
tre weight for the comparison of unequal-
sized individuals, can be caused by the
application of the Livi index in the oppo-
site direction. The closest one gets to the
actual physiological conditions is several
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Table 8 Overview of relations between quantities.

by centimetre

weight

for the Livi index and the

Pirquet index

n the proportional

development of the human

being

The square of the body

weight is put into relation.

second power of the body

length
sixth power of body length fifth power of the body length

measurements, which are based on the re-
lation 𝑝2

𝐿5
. Therefore, as a precaution, such a

measure 100 ⋅ 𝑝
2

𝐿5
was also used for our data,

to verify the behaviour of the two social
classes.
The result was
• for the 6 year old girls in class I 2,155
< in class II 2,219

• for the 7 year old girls in class I 2,018
< in class II 2,089

As can be observed, this does not princi-
pally change the above conclusion that
the children of class III are on average
relatively broader, more massive, than the
children of class I.
In the following series, Pirquet’s indices
𝑝2

𝐿5
, which are in principle related to Livi’s,

but are instead reciprocal and potentiated,
were calculated according to Rietz’s figures
(and ours), including the later developmen-
tal stages. It can be seen that the reciprocal
index is consistently greater for the chil-
dren of the wealthy than for those of the
poor in the first years of school. Only in the
later years does a reversal occur for both
sexes. This, too, is fully in line with the
relationships described above.
The authors of the present material in its
undivided entirety (Riedel and Skibinsky)
were able to compare the Gaussian curves
with observed variation polygons. By sepa-
rating into three social classes, as it is done
here, the material becomes too small to be
able to supply useful variation polygons.
Here the Gaussian curve can be a valuable
substitute.
In a certain direction, however, it seemed
to be of interest to let the original fig-

ures speak for themselves, namely about
the question of the variation symmetry.
Riedel’s polygonal figures do not show
any considerable and lawful asymmetry,
which the author particularly emphasizes,
because the opposite finding would be a
certain indication that the variation does
not follow the Gaussian error law, at least
not the law in its original version. (The
logarithmic extension of the Gaussian law
according to Fechner, however, results in
asymmetric curves). Riedel checks the sym-
metry of his polygons purely geometrically
using the arithmetic mean ordinate as the
symmetry axis. Deviating from this, I use
the ordinate of the most frequent (densest)
value as the symmetry axis; this separates
the total number of cases into plus vari-
ants and minus variants; each of these two
groups was counted separately, adding one-
half of the representatives of the densest
value itself. The number of individuals
falling to the right and left of this centre
line was then expressed as a percentage of
the total series. With this procedure, I first
examined the totalmaterial according to its
representation by Riedel (body length) and
Skibinsky (body weight) in both age groups
separately (but without differentiation of
the sexes) and further, in the same way,
additionally also the material of the female
children eliminated by me, whereby the
classes I and II had to be taken together
for the increase of the absolute number
of the cases. The result of these surveys
is shown in the following table III. It can
be seen that the plus variants are more
frequent than the minus variants, but that
the differences are usually smaller when
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Table 9 Comparison of Pirquet’s indices from Rietz’s figures and from ours.

Age Rietz Age author

Year
Class: Class:

affluent working class

Class Class

I II

Boys

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

74,2 > 72,9

76,6 > 74,5

78,7 > 76,8

81,2 > 78,8

81,7 > 81,3

82,0 > 82,6

82,9 = 82,5

82,1 > 83,0

Girls

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

74,9 > 71,5

76,0 > 74,7

78,8 > 77,4

80,9 > 79,1

77,8 < 81,0

81,8 < 82,5

79,7 < 81,1

81,6 < 82,7

6

7

71,96 > 69,79

75,52 > 73,43

using larger amounts of material. The con-
siderable differences, as they seem to exist
e.g. with the bodyweight of the 6-year-old
girls in class I + II, as well as in class III,
must be addressed as ”coincidental”, since
they would have to otherwise become no-
ticeable with the total material about both
sexes. Therefore, greater significance can-
not be attributed to the figures in the table,
which are not printed in bold. They do,
however, show one thing, which was the

author’s main concern, namely, that in no
case do the minus variants become more
prominent in the class of working-class
children and exceed the plus variants more
than in the other social classes or in total.
Such a stronger surpassing could have
been assumed, at best, a priori – although
probably only due to an obvious mistake
in thinking. The variation polygon of the
body dimensions is shifted to the left on
the abscissa axis in case of social disfavour,

Table 10 Data on the question of the symmetry of the variation polygon. Comparative frequency of minus and plus variations.

body height body weight

minus-

variants

plus-

variants

minus-

variants

plus-

variants

6-year-olds 47.95% 52.05% 46.53% 53.47%Total

material

(both sexes) 7-year-olds 46.05% 53.95% 46.36% 53.64%

6-year-olds 49.76% 50.24% 38.81% 61.19%Girls:

social class I

and II 7-year-olds 47.70% 52.30% 46.61% 53.39%

6-year-olds 46.23% 53.77% 34.91% 65.09%Girls: social

class III 7-year-olds 39.91% 60.09% 45.41% 54.59%
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but not at all asymmetrically deformed in
the sense that it would be narrower on
the minus variant side, or fall off more
steeply. In the same way, it is shifted, but
not formed differently, if one turns the Gal-
ton’s random apparatus a little bit around
its longitudinal axis, or if one shoots at the
target with a sideways carrying rifle.
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Appendix

Literature used in Dikanski (1914)

Curriculum vitae

Mordchaj Dikanski, born in Kharkov (Russia) on June 29, 1890, attended since 1905 the
Warsaw V. Humanistic Grammar School. In 1909 he was enrolled at the University of Mu-
nich.
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